精英家教網 > 初中數學 > 題目詳情

【題目】在某個世界讀書日前夕,我市某中學為了解本校學生的每周課外閱讀時間(用t表示,單位:小時),采用隨機抽樣的方法進行問卷調查,調查結果按,分為四個等級,并依次用A,B,CD表示,根據調查結果統(tǒng)計的數據,繪制成了如下圖所示的兩幅不完整的統(tǒng)計圖,由圖中給出的信息解答下列問題:

1)求本次調查的學生人數;

2)求扇形統(tǒng)計圖中等級B所在扇形的圓心角度數,并把條形統(tǒng)計圖補充完整;

3)若該校共有學生1200人,試估計每周課外閱讀時間不少于3小時的人數.

【答案】(1)200人;(2)54°,補全圖形見解析;(3)900人

【解析】

1)根據A等級所占的百分比及A等級的人數計算即可;

2)計算出C等級所占的百分比,進而求得等級B所在扇形的圓心角度數;

3)總人數×C等級百分比+D等級百分比)即可.

1

答:本次調查的學生人數為200

2)由條形統(tǒng)計圖知,C等級的人數為60人,

C等級所占的百分比為:=30%

B等級所占百分比為:1-10%-30%-45%=15%,

∴等級B所在扇形的圓心角度數為360°×15%=54°,

D等級的人數為200×45%=90.

補全條形統(tǒng)計圖如下:

3

答:每周課外閱讀時間不少于3小時的人數約為900人.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AE是⊙O的弦,C是弧AE的中點,弦CGAB于點D,交AE于點F,過點C作⊙O的切線,交BA延長線于點P,連接BE

1)求證:PCAE;

2)若sinPCF5,求BE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】《九章算術》是我國古代數學的經典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設每枚黃金重x兩,每枚白銀重y兩,根據題意得(  )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點AAEBC,垂足為E,連接DEF為線段DE上一點,且∠AFE=∠B

1)求證:△ADF∽△DEC

2)若AB4,AD3AE3,求AF的長;

3)若CDCE,則直線CD是以點E為圓心,AE長為半徑的圓的切線.試證明之.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知等邊△ABC,以AB為直徑的圓與BC邊交于點D,過點DDFAC,垂足為F

1)求證:DF是⊙O的切線;

2)過點FFGAB,垂足為G,若AB12

①求FG的長;

②求點DFG的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,ABAC,以AB為直徑作⊙O,分別交BC,AC于點D,E,過點DDFAC于點F

1)求證:DF是⊙O的切線;

2)若∠C60°,⊙O的半徑為2,求由弧DE,線段DFEF圍成的陰影部分的面積(結果保留根號和π

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某工廠生產部門為了解本部門工人的生產能力情況,進行了抽樣調查.該部門隨機抽取了30名工人某天每人加工零件的個數,數據如下:

20

21

19

16

27

18

31

29

21

22

25

20

19

22

35

33

19

17

18

29

18

35

22

15

18

18

31

31

19

22

整理上面數據,得到條形統(tǒng)計圖:

樣本數據的平均數、眾數、中位數如下表所示:

統(tǒng)計量

平均數

眾數

中位數

數值

23

m

21

根據以上信息,解答下列問題:

(1)上表中眾數m的值為   

(2)為調動工人的積極性,該部門根據工人每天加工零件的個數制定了獎勵標準,凡達到或超過這個標準的工人將獲得獎勵.如果想讓一半左右的工人能獲獎,應根據   來確定獎勵標準比較合適.(填平均數”、“眾數中位數”)

(3)該部門規(guī)定:每天加工零件的個數達到或超過25個的工人為生產能手.若該部門有300名工人,試估計該部門生產能手的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在中,.點的中點,點為射線上一點,將繞點順時針旋轉得到,設重疊部分的面積為,關于的函數圖象如圖2所示(其中,時,函數的解析式不同).則__

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,E為邊CD上一點,將△ADE沿AE折疊至△AD′ E處,AD′ CE交于點F,若∠B=55°,∠DAE=20°,則∠FED′ 的大小為( )

A.20°B.30°

C.35°D.45°

查看答案和解析>>

同步練習冊答案