【題目】已知:如圖,在正方形ABCD外取E,連接AEBE、DE.過點AAE的垂線交DE于點P,已知AE=AP=BE=1.

(1)求證:△APD≌△AEB;

(2)連接PC,求線段PC的長度;

(3)試求正方形ABCD的面積。

【答案】1)見解析(232+

【解析】

1)由四邊形ABCD是正方形,得到AB=AD,∠BAD=90°,由AEAP,得到∠EAP=90°,于是得到∠EAB=DAP,即可得到結(jié)論;

2)連接PBPC,由(1)證得APD≌△AEB,于是得到PD=AE,∠ADO=ABE,推出ABP≌△DCP,得到PB=PC,根據(jù)勾股定理即可得到結(jié)論;

3)過AAMPEM,根據(jù)等腰直角三角形的性質(zhì)得到AM=PM= ,求出DM=1+ ,由勾股定理得到AD= ,于是得到結(jié)果.

(1)∵四邊形ABCD是正方形,

AB=AD,BAD=90°,

AEAP

∴∠EAP=90°,

∴∠EAB=DAP,

APDAEB中,

,

∴△APD≌△AEB

(2)連接PB,PC,(1)證得APD≌△AEB,

PD=AE,∠ADO=ABE,

AE=AP

PD=AP,

∴∠PAD=PDA

∴∠BAP=CDP,

ABPDCP中,

∴△ABP≌△DCP,

PB=PC

∵∠BOE=AOP,

∴∠BEO=BAD=90°,

PE= AP=,

PB=,

PC=PB=;

(3)AAMPEM,

AM=PM= PE=,

DM=1+,

AD=,

∴正方形ABCD的面積=AD =2+.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在草莓上市的旺季,小穎和媽媽周末計劃去草莓園采摘草莓.甲、乙兩家草莓園生產(chǎn)的草莓品質(zhì)相同,每千克售價均為.甲草莓園的優(yōu)惠方案是:游客進園需購買每人元的門票,采摘的草莓按六折收費;乙草莓園的優(yōu)惠方案是:游客進園不需購買門票,采摘的草莓超過千克后,超過部分按五折收費.請你回答下列問題:

1)如果去乙草莓園采摘千克草莓,需支付多少元?

2)如果個人去甲草莓園采摘千克草莓,需支付多少元?

3)小穎和媽媽準備采摘千克草莓送給朋友,哪家會更便宜?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形沿折疊,使點落在邊上的點處,點落在點處,已知,連接,則__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:如圖1,圓的概念:在平面內(nèi),線段PA繞它固定的一個端點P旋轉(zhuǎn)一周,另一個端點A所形成的圖形叫做圓.就是說,到某個定點等于定長的所有點在同一個圓上.圓心在P(a,b),半徑為r的圓的方程可以寫為:(x-a)2+(y-b)2=r2.如:圓心在P(2,-1),半徑為5的圓的方程為:(x-2)2+(y+1)2=25.

(1)填空: ①以A(3,0)為圓心,1為半徑的圓的方程為:________; ②以B(-1,-2)為圓心, 為半徑的圓的方程為:________;

(2)根據(jù)以上材料解決以下問題:

如圖2,B(-6,0)為圓心的圓與y軸相切于原點,C是☉B上一點,連接OC,BDOC垂足為D,延長BDy軸于點E,已知sinAOC=.

①連接EC,證明EC是☉B的切線;

②在BE上是否存在一點P,使PB=PC=PE=PO,若存在,P點坐標,并寫出以P為圓心,PB為半徑的☉P的方程;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面推理過程:

如圖,已知:DEBC,DFBE分別平分∠ADE、∠ABC

求證:∠FDE=DEB

證明:∵DEBC(已知)

∴∠ADE=  ①   (     ②    

DF、BE分別平分∠ADE、∠ABC,(已知)

ADF= 、邸  ( ④ )

ABE=  ⑥   (     ⑤    

ADF=ABE(等量代換)

DF     (     ⑦    

FDE=DEB(     ⑧    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A、B兩個蔬菜市場各有蔬菜14噸,現(xiàn)要全部運往甲、乙兩地,其中甲地需要蔬菜15噸,乙地需要蔬菜13噸,從蔬菜市場A到甲地運費50/噸,到乙地30/噸;從蔬菜市場B到甲地運費60/噸,到乙地45/噸。

1)設從蔬菜市場A向甲地運送蔬菜x噸,請完成下表:

運往甲地(單位:噸)

運往乙地(單位:噸)

蔬菜市場A

x

蔬菜市場B

2)若總運費為1300元,則從蔬菜市場A向甲地運送蔬菜多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在ABC中,D是BC邊上一點,E是AD的中點,過點A作BC的平行線交CE的延長線于F,且AF=BD,連接BF.

(1)求證:點D是線段BC的中點;

(2)如圖2,若AB=AC=13,AF=BD=5,求四邊形AFBD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有依次3個數(shù):2、97.對任意相鄰的兩個數(shù),都用右邊的數(shù)減去左邊的數(shù),所得之差寫在這兩個數(shù)之間,可產(chǎn)生一個新數(shù)串:2、7、9、-2、7,這稱為第1次操作,做第2次同樣的操作后也可以產(chǎn)生一個新數(shù)串:2、5、7、2、9、-11、-2、97,繼續(xù)依次操作下去,問從數(shù)串2、9、7開始操作第20次后所產(chǎn)生的那個數(shù)串的所有數(shù)之和是___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,∠A0B=420,點P∠A0B內(nèi)一點,分別作出P點關于OA、OB的對稱點P1,P2,連接P1P2OAM,交OBN,P1P2=15,則△PMN的周長為________,∠MPN ________.

查看答案和解析>>

同步練習冊答案