精英家教網 > 初中數學 > 題目詳情

【題目】中,,點,點上,連接,

(1)如圖,若,,求的度數;

(2),,直接寫出 (的式子表示)

【答案】130°;(290°-

【解析】

1)根據三角形的內角和定理即可求出∠B+∠C,然后根據等邊對等角可得∠BAE=BEA、∠CAD=CDA,從而求出∠BEA+∠CDA,再根據三角形的內角和定理即可求出∠DAE;

2)根據三角形的內角和定理即可求出∠B+∠C,然后根據等邊對等角可得∠BAE=BEA、∠CAD=CDA,從而求出∠BEA+∠CDA,再根據三角形的內角和定理即可求出∠DAE;

解:(1)∵

∴∠B+∠C=180°-∠BAC=60°

,

∴∠BAE=BEA=180°-∠B

CAD=CDA=180°-∠C

∴∠BEA+∠CDA=180°-∠B)+180°-∠C=[360°-(∠B+∠C]=150°

=180°-(∠BEA+∠CDA=30°

2)∵

∴∠B+∠C=180°-∠BAC=180°-

,

∴∠BAE=BEA=180°-∠B

CAD=CDA=180°-∠C

∴∠BEA+∠CDA=180°-∠B)+180°-∠C=[360°-(∠B+∠C]= 90°+

=180°-(∠BEA+∠CDA=90°-

故答案為:90°-

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,AB是O的直徑,C是O外一點,AB=AC,連接BC,交O于點D,過點D作DEAC,垂足為E.

(1)求證:DE與O相切.

(2)B=30°,AB=4,則圖中陰影部分的面積是   (結果保留根號和π).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC的三個頂點的坐標分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).

(1)若ABC經過平移后得到,已知點的坐標為(4,0),寫出頂點,的坐標;

(2)若ABC和關于原點O成中心對稱圖形,寫出的各頂點的坐標;

(3)將ABC繞著點O按順時針方向旋轉90°得到,寫出的各頂點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知正比例函數和反比例函數的圖象都經過點A(﹣3,﹣3).

(1)求正比例函數和反比例函數的表達式;

(2)把直線OA向上平移后與反比例函數的圖象交于點B(﹣6,m),與x軸交于點C,求m的值和直線BC的表達式;

(3)在(2)的條件下,直線BCy軸交于點D,求以點A,B,D為頂點的三角形的面積;

(4)在(3)的條件下,點A,B,D在二次函數的圖象上,試判斷該二次函數在第三象限內的圖象上是否存在一點E,使四邊形OECD的面積S1與四邊形OABD的面積S滿足:S1=S?若存在,求點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點的角平分線上一點,于點,點是線段上一點.已知,點上一點.若滿足,則的長度為(

A.3B.5C.57D.37

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等腰直角三角形中,,點坐標為,點坐標為,且 ,滿足

(1)寫出、兩點坐標;

(2)點坐標;

(3)如圖,,上一點,且,請寫出線段的數量關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,RtABC中,∠A90°,ABAC,點DBC邊的中點連接AD,則易證ADBDCD,即ADBC;如圖2,若將題中ABAC這個條件刪去,此時AD仍然等于BC

理由如下:延長ADH,使得AH2AD,連接CH,先證得ABD≌△CHD,此時若能證得ABC≌△CHA

即可證得AHBC,此時ADBC,由此可見倍長過中點的線段是我們三角形證明中常用的方法.

1)請你先證明ABC≌△CHA,并用一句話總結題中的結論;

2)現將圖1ABC折疊(如圖3),點A與點D重合,折痕為EF,此時不難看出BDECDF都是等腰直角三角形.BEDECFDF.由勾股定理可知DE2+DF2EF2,因此BE2+CF2EF2,若圖2ABC也進行這樣的折疊(如圖4),此時線段BE、CF、EF還有這樣的關系式嗎?若有,請證明;若沒有,請舉反例.

3)在(2)的條件下,將圖3中的DEF繞著點D旋轉(如圖5),射線DE、DF分別交AB、AC于點E、F,此時(2)中結論還成立嗎?請說明理由.圖4中的DEF也這樣旋轉(如圖6),直接寫出上面的關系式是否成立.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=﹣x+2x軸于點A,交y軸于點B

(1)求∠OAB的度數;

(2)點M是直線y=﹣x+2上的一個動點,且⊙M的半徑為2,圓心為M,判斷原點O與⊙M的位置關系,并說明理由;

(3)當⊙My軸相切時,直接寫出切點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,、兩點,點,的半徑是周長為,則________

查看答案和解析>>

同步練習冊答案