如圖,在Rt△OAB中,∠OBA=90°,且點(diǎn)B的坐標(biāo)為(0,4).
(1)寫出點(diǎn)A的坐標(biāo).
(2)畫出△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后的△OA1B1
(3)求點(diǎn)A旋轉(zhuǎn)到點(diǎn)A1所經(jīng)過的路線長(zhǎng)(結(jié)果保留π).
分析:(1)根據(jù)圖象直接得出A點(diǎn)坐標(biāo)即可;
(2)將B,A分別繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得出對(duì)應(yīng)點(diǎn)位置畫出即可;
(3)根據(jù)扇形弧長(zhǎng)公式直接求出即可.
解答:解:(1)A(3,4);
    
(2)如圖所示:

(3)依題意OA=
32+42
=5,
點(diǎn)A到點(diǎn)A1經(jīng)過的路線長(zhǎng)為:
90π×5
180
=2.5π
點(diǎn)評(píng):此題考查了旋轉(zhuǎn)作圖、弧長(zhǎng)的計(jì)算,解答本題需要正確地作出△OA1B1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△OAB中,∠OBA=90°,且點(diǎn)B的坐標(biāo)為(0,4).
(1)寫出點(diǎn)A的坐標(biāo);
(2)畫出△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后的△O1A1B1;
(3)求出sin∠A1OB1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△OAB中,∠OAB=90°,且點(diǎn)B的坐標(biāo)為(4,2),將△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得△精英家教網(wǎng)OA1B1
(1)在圖中作出△OA1B1并直接寫出A1,B1的坐標(biāo);
(2)求點(diǎn)B旋轉(zhuǎn)到點(diǎn)B1所經(jīng)過的路線長(zhǎng)(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△OAB中,∠OAB=90°,且點(diǎn)B的坐標(biāo)為(4,3).
(1)在圖中畫出△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△OA1B1;
(2)求點(diǎn)B旋轉(zhuǎn)到點(diǎn)B1所經(jīng)過的路線長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△OAB中,∠OBA=90°,OB=AB=4,將△OAB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°得到△OA1B1
(1)線段OB1的長(zhǎng)是
4
4
,∠A1OB的度數(shù)是
135°
135°
;
(2)連接BB1,求證:四邊形OBB1A1是平行四邊形;
(3)求四邊形OBB1A1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•株洲)如圖,在Rt△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°得到△OA1B1
(1)線段OA1的長(zhǎng)是
6
6
,∠AOB1的度數(shù)是
135
135
度;
(2)連接AA1,求證:四邊形OAA1B1是平行四邊形;
(3)四邊形OAA1B1的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案