【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個交點,求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過點A(3,0),與y軸交于點B,直線AB與這個二次函數(shù)圖象的對稱軸交于點P,求點P的坐標(biāo).
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
【答案】
(1)解:∵二次函數(shù)的圖象與x軸有兩個交點,
∴△=22+4m>0
∴m>﹣1
(2)解:∵二次函數(shù)的圖象過點A(3,0),
∴0=﹣9+6+m
∴m=3,
∴二次函數(shù)的解析式為:y=﹣x2+2x+3,
令x=0,則y=3,
∴B(0,3),
設(shè)直線AB的解析式為:y=kx+b,
∴ ,解得: ,
∴直線AB的解析式為:y=﹣x+3,
∵拋物線y=﹣x2+2x+3,的對稱軸為:x=1,
∴把x=1代入y=﹣x+3得y=2,
∴P(1,2)
(3)解:根據(jù)函數(shù)圖象可知:x<0或x>3
【解析】(1)二次函數(shù)的圖象與x軸有兩個交點,則△>0,從而可求得m的取值范圍;(2)由點B、點A的坐標(biāo)求得直線AB的解析式,然后求得拋物線的對稱軸方程為x=1,然后將x=1代入直線的解析式,從而可求得點P的坐標(biāo);(3)一次函數(shù)值大于二次函數(shù)值即直線位于拋物線的上方部分x的取值范圍.
【考點精析】本題主要考查了拋物線與坐標(biāo)軸的交點的相關(guān)知識點,需要掌握一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當(dāng)b2-4ac>0時,圖像與x軸有兩個交點;當(dāng)b2-4ac=0時,圖像與x軸有一個交點;當(dāng)b2-4ac<0時,圖像與x軸沒有交點.才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,反比例函數(shù)y= (x>0)的圖象經(jīng)過點A(2 ,1),射線AB與反比例函數(shù)圖象交與另一點B(1,a),射線AC與y軸交于點C,∠BAC=75°,AD⊥y軸,垂足為D.
(1)求k和a的值;
(2)直線AC的解析式;
(3)如圖3,M是線段AC上方反比例函數(shù)圖象上一動點,過M作直線l⊥x軸,與AC相交于N,連接CM,求△CMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四個均由十六個小正方形組成的正方形網(wǎng)格中,各有一個三角形ABC,那么這四個三角形中,不是直角三角形的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標(biāo)系,拋物線可以用y=﹣ x2+bx+c表示,且拋物線的點C到墻面OB的水平距離為3m時,到地面OA的距離為 m.
(1)求該拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形ABC中,AB=AC,D,E分別為邊AB,AC上的點,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,則∠DEA=( )
A. 40° B. 50° C. 60° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一組有規(guī)律排列的數(shù):1、﹣1、、﹣、、﹣、1、﹣1、、﹣、、﹣…其中,1、﹣1、、﹣、、﹣這六個數(shù)按此規(guī)律重復(fù)出現(xiàn),問:
(1)第50個數(shù)是什么數(shù)?
(2)把從第1個數(shù)開始的前2017個數(shù)相加,結(jié)果是多少?
(3)從第1個數(shù)起,把連續(xù)若干個數(shù)的平方加起來,如果和為520,則共有多少個數(shù)的平方相加?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC繞點C順時針旋轉(zhuǎn)得到,其中點A′與點A是對應(yīng)點,點B′與點B是對應(yīng)點,連接AB′,且A、B′、A′在同一條直線上,則AA′的長為( )
A.4
B.6
C.3
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,點C是 的中點,∠COB=60°,過點C作CE⊥AD,交AD的延長線于點E
(1)求證:CE為⊙O的切線;
(2)判斷四邊形AOCD是否為菱形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com