【題目】我市中小學全面開展“陽光體育”活動,某校在大課間中開設了A:體操,B:跑操,C:舞蹈,D:健美操四項活動,為了解學生最喜歡哪一項活動,隨機抽取了部分學生進行調查,并將調查結果繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:
(1)這次被調查的學生共有 人.
(2)請將統(tǒng)計圖2補充完整.
(3)統(tǒng)計圖1中B項目對應的扇形的圓心角是 度.
(4)已知該校共有學生3600人,請根據(jù)調查結果估計該校喜歡健美操的學生人數(shù).
【答案】(1)500;
(2)圖形見解析;
(3)54;
(4)該校喜歡健美操的學生人數(shù)1764人.
【解析】試題分析:(1)利用C的人數(shù)÷所占百分比可得被調查的學生總數(shù);
(2)利用總人數(shù)減去其它各項的人數(shù)=A的人數(shù),再補圖即可;
(3)計算出B所占百分比,再用360°×B所占百分比可得答案;
(4)首先計算出樣本中喜歡健美操的學生所占百分比,再利用樣本估計總體的方法計算即可.
試題解析:(1)140÷28%=500(人);
(2)A的人數(shù):500﹣75﹣140﹣245=40;
(3)75÷500×100%=15%,360°×15%=54°,
(4)245÷500×100%=49%,3600×49%=1764(人)
答:該校喜歡健美操的學生人數(shù)1764人.
科目:初中數(shù)學 來源: 題型:
【題目】某校八年級全體320名學生在電腦培訓前后各參加了一次水平相同的考試,考分都以同一標準劃分成“不合格”、“合格”、“優(yōu)秀”三個等級.為了了解電腦培訓的效果,用抽簽方式得到其中32名學生的兩次考試考分等級,所繪制的統(tǒng)計圖如圖所示.試結合圖示信息回答下列問題:
(1)這32名學生培訓前考分的中位數(shù)所在的等級是 ,培訓后考分的中位數(shù)所在的等級是 .
(2)這32名學生經(jīng)過培訓,考分等級“不合格” 的百分比由 下降到 .
(3)估計該校整個八年級中,培訓后考分等級為“合格”與“優(yōu)秀”的學生共有 名.
(4)你認為上述估計合理嗎:理由是什么?
答: ,理由: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】認真閱讀下面關于三角形內外角平分線所夾角的探究片段,完成所提出的問題.
探究1:如圖l,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點,通過分析發(fā)現(xiàn)∠BOC=90+∠A,理由如下:
∵BO和CO分別是∠ABC和∠ACB的角平分線
∴∠1=∠ABC, ∠2=∠ACB
∴∠l+∠2=(∠ABC+∠ACB)= (180-∠A)= 90-∠A
∴∠BOC=180-(∠1+∠2) =180-(90-∠A)=90+∠A
(1)探究2;如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點,試分析∠BOC與∠A有怎樣的關系?請說明理由.
(2)探究3:如圖3中, O是外角∠DBC與外角∠ECB的平分線BO和CO的交點,則∠BOC與∠A有怎樣的關系?(直接寫出結論)
(3)拓展:如圖4,在四邊形ABCD中,O是∠ABC與∠DCB的平分線BO和CO的交點,則∠BOC與∠A+∠D有怎樣的關系?(直接寫出結論)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】養(yǎng)成良好的早鍛煉習慣,對學生的學習和生活非常有益某中學為了了解七年級學生的早鍛煉情況,校政教處在七年級隨機抽取了部分學生,并對這些學生通常情況下一天的早鍛煉時間分鐘進行了調查現(xiàn)把調查結果分為A,B,C,D四組,如下表所示;同時,將調查結果繪制成下面兩幅不完整的統(tǒng)計圖.
組別 | 早鍛煉時間 |
A | |
B | |
C | |
D |
請根據(jù)以上提供的信息,解答下列問題:
扇形統(tǒng)計圖中D所在扇形的圓心角度數(shù)為______;
補全頻數(shù)分布直方圖;
已知該校七年級共有1200名學生,請你估計這個年級學生中有多少人一天早鍛煉的時間不少于20分鐘.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2﹣2bx﹣3(b為常數(shù),b<0).
(1)拋物線y=x2﹣2bx﹣3總經(jīng)過一定點,定點坐標為;
(2)拋物線的對稱軸為直線x=(用含b的代數(shù)式表示),位于y軸的
側.
(3)思考:若點P(﹣2,﹣1)在拋物線y=x2﹣2bx﹣3上,拋物線與反比例函數(shù)y= (k>0,x>0)的圖象在第一象限內交點的橫坐標為a,且滿足2<a<3,試確定k的取值范圍.
(4)探究:設點A是拋物線上一點,且點A的橫坐標為m,以點A為頂點做邊長為1的正方形ABCD,AB⊥x軸,點C在點A的右下方,若拋物線與CD邊相交于點P(不與D點重合且不在y軸上),點P的縱坐標為﹣3,求b與m之間的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖∠1=∠2,CF⊥AB,DE⊥AB,求證:FG∥BC.
證明:∵CF⊥AB,DE⊥AB (已知)
∴∠BED=90°,∠BFC=90°( )
∴∠BED=∠BFC ( )
∴ED∥FC ( )
∴∠1=∠BCF ( )
∵∠2=∠1 ( 已知 )
∴∠2=∠BCF ( )
∴FG∥BC ( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;
⑤由a2=b2,得a=b.其中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的面積為18,點D在線段AC上,點F在線段BC的延長線上,且,四邊形DCFE是平行四邊形,則圖中陰影部分的面積為( )
A. 8 B. 6 C. 4 D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com