【題目】認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題.
探究1:如圖l,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點(diǎn),通過分析發(fā)現(xiàn)∠BOC=90+∠A,理由如下:
∵BO和CO分別是∠ABC和∠ACB的角平分線
∴∠1=∠ABC, ∠2=∠ACB
∴∠l+∠2=(∠ABC+∠ACB)= (180-∠A)= 90-∠A
∴∠BOC=180-(∠1+∠2) =180-(90-∠A)=90+∠A
(1)探究2;如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點(diǎn),試分析∠BOC與∠A有怎樣的關(guān)系?請(qǐng)說明理由.
(2)探究3:如圖3中, O是外角∠DBC與外角∠ECB的平分線BO和CO的交點(diǎn),則∠BOC與∠A有怎樣的關(guān)系?(直接寫出結(jié)論)
(3)拓展:如圖4,在四邊形ABCD中,O是∠ABC與∠DCB的平分線BO和CO的交點(diǎn),則∠BOC與∠A+∠D有怎樣的關(guān)系?(直接寫出結(jié)論)
【答案】(1)探究2結(jié)論:∠BOC=;(2)探究3:結(jié)論∠BOC=90°-;(3)拓展:結(jié)論
【解析】
(1)根據(jù)角平分線的定義可得∠1=∠ABC,∠2=∠ACD,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和和角平分線的定義可得∠2=∠ACD=(∠A+∠ABC),∠BOC=∠2-∠1,然后整理即可得解;
(2)根據(jù)三角形的外角性質(zhì)以及角平分線的定義表示出∠OBC和∠OCB,再根據(jù)三角形的內(nèi)角和定理解答;
(3)同(1)的求解思路.
(1)探究2結(jié)論:∠BOC=∠A.
理由如下:如圖,
∵BO和CO分別是∠ABC和∠ACD的角平分線,
∴∠1=∠ABC,∠2=∠ACD,
又∵∠ACD是△ABC的一個(gè)外角,
∴∠2=∠ACD=(∠A+∠ABC)=∠A+∠1,
∵∠2是△BOC的一個(gè)外角,
∴∠BOC=∠2-∠1=∠A+∠1-∠1=∠A,
即∠BOC=∠A;
(2)由三角形的外角性質(zhì)和角平分線的定義,∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),
在△BOC中,∠BOC=180°-∠OBC-∠OCB=180°-(∠A+∠ACB)-(∠A+∠ABC),
=180°-(∠A+∠ACB+∠A+∠ABC),
=180°-(180°+∠A),
=90°-∠A;
故答案為:∠BOC=90°-∠A.
(3)∠OBC+∠OCB=(360°-∠A-∠D),
在△BOC中,∠BOC=180°-(360°-∠A-∠B)=(∠A+∠D).
故答案為:∠BOC=(∠A+∠D).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩組鄰邊分別相等的四邊形叫做“箏形”,如圖,四邊形ABCD是一個(gè)箏形,其中,,詹姆斯在探究箏形的性質(zhì)時(shí),得到如下結(jié)論:
;;≌;四邊形ABCD的面積其中正確的結(jié)論有
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)了絕對(duì)值和有理數(shù)大小比較的知識(shí)后,老師在黑板上(如圖所示)布置了作業(yè),請(qǐng)完成.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了讓同學(xué)們了解自己的體育水平,初二1班的體育劉老師對(duì)全班45名學(xué)生進(jìn)行了一次體育模擬測(cè)試(得分均為整數(shù)),成績(jī)滿分為10分,1班的體育委員根據(jù)這次測(cè)試成績(jī),制作了統(tǒng)計(jì)圖和分析表如下:
初二1班體育模擬測(cè)試成績(jī)分析表
平均分 | 方差 | 中位數(shù) | 眾數(shù) | |
男生 | 2 | 8 | 7 | |
女生 | 7.92 | 1.99 | 8 |
根據(jù)以上信息,解答下列問題:
(1)這個(gè)班共有男生________人,共有女生________人;
(2)補(bǔ)全初二1班體育模擬測(cè)試成績(jī)分析表.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在不透明的布袋中裝有1個(gè)白球,2個(gè)紅球,它們除顏色外其余完全相同.
(1)從袋中任意摸出兩個(gè)球,試用樹狀圖或表格列出所有等可能的結(jié)果,并求摸出的球恰好是兩個(gè)紅球的概率;
(2)若在布袋中再添加x個(gè)白球,充分?jǐn)噭,從中摸出一個(gè)球,使摸到白球的概率為 ,求添加的白球個(gè)數(shù)x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過原點(diǎn)O和x軸上另一點(diǎn)A,它的對(duì)稱軸x=2與x軸交于點(diǎn)C,直線y=﹣2x﹣1經(jīng)過拋物線上一點(diǎn)B(﹣2,m),且與y軸、直線x=2分別交于點(diǎn)D、E.
(1)求m的值及該拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)判斷直線BE與拋物線交點(diǎn)的個(gè)數(shù);
(3)求證:CD垂直平分BE;
(4)若P是該拋物線上的一個(gè)動(dòng)點(diǎn),是否存在這樣的點(diǎn)P,使得△PBE是等腰直角三角形,且∠PEB=90°?若存在,試求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:課外興趣小組活動(dòng)時(shí),老師提出了如下問題:
如圖1,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到E,使得DE=AD,再連接BE(或?qū)?/span>△ACD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關(guān)系可得2<AE<8,則1<AD<4.
感悟:解題時(shí),條件中若出現(xiàn)“中點(diǎn)”“中線”字樣,可以考慮構(gòu)造以中點(diǎn)為對(duì)稱中心的中心對(duì)稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個(gè)三角形中.
(1)問題解決:受到(1)的啟發(fā),請(qǐng)你證明下面命題:如圖2,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF.
①求證:BE+CF>EF;②若∠A=90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明;
(2)問題拓展:如圖3,在平行四邊形ABCD中,AD=2AB,F是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,聯(lián)結(jié)EF、CF,那么下列結(jié)論①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.中一定成立是 (填序號(hào)).
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市中小學(xué)全面開展“陽光體育”活動(dòng),某校在大課間中開設(shè)了A:體操,B:跑操,C:舞蹈,D:健美操四項(xiàng)活動(dòng),為了解學(xué)生最喜歡哪一項(xiàng)活動(dòng),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問題:
(1)這次被調(diào)查的學(xué)生共有 人.
(2)請(qǐng)將統(tǒng)計(jì)圖2補(bǔ)充完整.
(3)統(tǒng)計(jì)圖1中B項(xiàng)目對(duì)應(yīng)的扇形的圓心角是 度.
(4)已知該校共有學(xué)生3600人,請(qǐng)根據(jù)調(diào)查結(jié)果估計(jì)該校喜歡健美操的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知經(jīng)過原點(diǎn)的拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸是直線x=﹣1,下列結(jié)論中: ①ab>0,②a+b+c>0,③當(dāng)﹣2<x<0時(shí),y<0.
正確的個(gè)數(shù)是( )
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com