【題目】如圖,在中,,的中點,,則__________

【答案】80°

【解析】

FFGABCD,交BCG,由的中點,則有BG=AB=FG=AF,然后得到BG=GE=FG=BC,根據(jù)等邊對等角,求出∠AEG的度數(shù),即可求出∠B的度數(shù).

解:過FFGABCD,交BCG;

則四邊形ABGF是平行四邊形,所以AF=BG,即GBC的中點;

BC=2AB,FAD的中點,

BG=AB=FG=AF

連接EG,在RtBEC中,EG是斜邊上的中線,

BG=GE=FG=BC;

AEFG,

∴∠EFG=AEF=FEG=50°,

∴∠AEG=AEF+FEG=100°,

∴∠B=BEG=180°100°=80°.

故答案為:80°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點A、B的坐標(biāo)分別為(0,2)、(1,0),頂點C在函數(shù)y=x2+bx-1的圖象上,將正方形ABCD沿x軸正方向平移后得到正方形A′B′C′D′,點D的對應(yīng)點D′落在拋物線上,則點D與其對應(yīng)點D′之間的距離為 ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象與一次函數(shù)y2=ax+b 的圖象交于點 A1,4)和點 Bm,-2),直線 AB x 軸于點 C.

1)求這兩個函數(shù)的關(guān)系式;

2)求OAB 的面積;

3)結(jié)合圖象直接寫出 x 的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上的點,EAD的延長線的點,且AEAM,過EEFAM垂足為FEFDC于點N

1)求證:AFBM;

2)若AB12,AF5,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是等腰△ABC底邊BC上的高.點O是AC中點,延長DO到E,使OE=OD,連接AE,CE.

(1)求證:四邊形ADCE的是矩形;

(2)若AB=17,BC=16,求四邊形ADCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館有50個房間供游客住宿,當(dāng)每個房間的房價為每天180元時,房間會全部住滿.當(dāng)每個房間 每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費(fèi)用.根據(jù)規(guī)定,每個房間每天的房價不得高于340元.設(shè)每個房間的房價增加x元(x10的正整數(shù)倍).

1)設(shè)一天訂住的房間數(shù)為y,直接寫出yx的函數(shù)關(guān)系式及自變量x的取值范圍;

2)設(shè)賓館一天的利潤為w元,求wx的函數(shù)關(guān)系式;

3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用對稱性可設(shè)計出美麗的圖案.在邊長為1的方格紙中,有如圖所示的四邊形(頂點都在格點上)

(1)先作出該四邊形關(guān)于直線成軸對稱的圖形,再作出你所作的圖形連同原四邊形繞0點按順時針方向旋轉(zhuǎn)90o后的圖形;

(2)完成上述設(shè)計后,整個圖案的面積等于_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的角平分線,, 垂足為,的面積分別為5037 的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2-12ax+36a-5的圖象在4<x<5這一段位于x軸下方,在8<x<9這一段位于x軸上方,則a的值為___________

查看答案和解析>>

同步練習(xí)冊答案