二次函數(shù)y=的圖象如圖,點(diǎn)A0位于坐標(biāo)原點(diǎn),點(diǎn)A1,A2,A3…An在y軸的正半軸上,點(diǎn)B1,B2,B3…Bn在二次函數(shù)位于第一象限的圖象上,點(diǎn)C1,C2,C3…Cn在二次函數(shù)位于第二象限的圖象上,四邊形A0B1A1C1,四邊形A1B2A2C2,四邊形A2B3A3C3…四邊形An﹣1BnAnCn都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠An1BnAn
=60°,菱形An﹣1BnAnCn的周長為     
4n.

試題分析:由于△A0B1A1,△A1B2A2,△A2B3A3,…,都是等邊三角形,因此∠B1A0x=30°,可先設(shè)出△A0B1A1的邊長,然后表示出B1的坐標(biāo),代入拋物線的解析式中即可求得△A0B1A1的邊長,用同樣的方法可求得△A0B1A1,△A1B2A2,△A2B3A3,…的邊長,然后根據(jù)各邊長的特點(diǎn)總結(jié)出此題的一般化規(guī)律,根據(jù)菱形的性質(zhì)易求菱形An-1BnAnCn的周長.
試題解析:∵四邊形A0B1A1C1是菱形,∠A0B1A1=60°,
∴△A0B1A1是等邊三角形.
設(shè)△A0B1A1的邊長為m1,則B1);
代入拋物線的解析式中得:2=,
解得m1=0(舍去),m1=1;
故△A0B1A1的邊長為1,
同理可求得△A1B2A2的邊長為2,

依此類推,等邊△An-1BnAn的邊長為n,
故菱形An-1BnAnCn的周長為4n.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,矩形的邊軸上,且,,直線經(jīng)過點(diǎn),交軸于點(diǎn)
(1)點(diǎn)、的坐標(biāo)分別是       ),       );
(2)求頂點(diǎn)在直線上且經(jīng)過點(diǎn)的拋物線的解析式;
(3)將(2)中的拋物線沿直線向上平移,平移后的拋物線交軸于點(diǎn),頂點(diǎn)為點(diǎn).求出當(dāng)時拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線與拋物線y=ax2+bx-3(a≠0)交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的縱坐標(biāo)為5.點(diǎn)P是直線AB下方的拋物線上的一動點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線交直線AB于點(diǎn)C,作PD⊥AB于點(diǎn)D.
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為m.
①用含m的代數(shù)式表示線段PD的長,并求出線段PD長的最大值;
②連結(jié)PB,線段PC把△PDB分成兩個三角形,是否存在適合的m的值,使這兩個三角形的面積比為1:2.若存在,直接寫出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在等腰△ABC中,底邊BC=8,高AD=2,一動點(diǎn)Q從B點(diǎn)出發(fā),以每秒1個單位的速度沿BC向右運(yùn)動,到達(dá)D點(diǎn)停止;另一動點(diǎn)P從距離B點(diǎn)1個單位的位置出發(fā),以相同的速度沿BC向右運(yùn)動,到達(dá)DC中點(diǎn)停止;已知P、Q同時出發(fā),以PQ為邊作正方形PQMN,使正方形PQMN和△ABC在BC的同側(cè),設(shè)運(yùn)動的時間為t秒(t≥0).
(1)當(dāng)點(diǎn)N落在AB邊上時,t的值為   ,當(dāng)點(diǎn)N落在AC邊上時,t的值為   
(2)設(shè)正方形PQMN與△ABC重疊部分面積為S,求出當(dāng)重疊部分為五邊形時S與t的函數(shù)關(guān)系式以及t的取值范圍;
(3)(本小題選做題,做對得5分,但全卷不超過150分)
如圖2,分別取AB、AC的中點(diǎn)E、F,連接ED、FD,當(dāng)點(diǎn)P、Q開始運(yùn)動時,點(diǎn)G從BE中點(diǎn)出發(fā),以每秒 個單位的速度沿折線BE-ED-DF向F點(diǎn)運(yùn)動,到達(dá)F點(diǎn)停止運(yùn)動.請問在點(diǎn)P的整個運(yùn)動過程中,點(diǎn)G可能與PN邊的中點(diǎn)重合嗎?如果可能,請直接寫出t的值或取值范圍;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)拋物線過A(0,2),B(4,3),C三點(diǎn),其中點(diǎn)C在直線上,且點(diǎn)C到拋物線對稱軸的距離等于1,則拋物線的函數(shù)解析式為       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如果將拋物線y=x2+2向下平移1個單位,那么所得新拋物線的表達(dá)式是( 。
A.y=(x-1)2+2B.y=(x+1)2+2
C.y=x2+1D.y=x2+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,拋物線過點(diǎn),這條拋物線的對稱軸與x軸交于點(diǎn)C,點(diǎn)P為射線CB上一個動點(diǎn)(不與點(diǎn)C重合),點(diǎn)D為此拋物線對稱軸上一點(diǎn),且?CPD=
(1)求拋物線的解析式;
(2)若點(diǎn)P的橫坐標(biāo)為m,△PCD的面積為S,求S與m之間的函數(shù)關(guān)系式;
(3)過點(diǎn)P作PE⊥DP,連接DE,F(xiàn)為DE的中點(diǎn),試求線段BF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=(x﹣1)2﹣3的對稱軸是( 。
A.y軸B.直線x=﹣1C.直線x=1D.直線x=﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=(2x-1)2+2的頂點(diǎn)的坐標(biāo)是 
A.(1,2)B.(1,-2)C.(,2)D.(-,-2)

查看答案和解析>>

同步練習(xí)冊答案