【題目】(本小題滿分8分)
閱讀材料:
如圖,在四邊形ABCD中,對角線AC⊥BD,垂足為P.
求證:S四邊形ABCD=
證明:AC⊥BD→
∴S四邊形ABCD=S△ACD+S△ACB=
=
解答問題:
(1)上述證明得到的性質(zhì)可敘述為_______________________________________.
(2)已知:如圖,等腰梯形ABCD中,AD∥BC,對角線AC⊥BD且相交于點P,AD=3cm,BC=7cm,利用上述的性質(zhì)求梯形的面積.
【答案】(1)對角線互相垂直的四邊形的面積等于對角線乘積的一半. (2)S梯形=25(cm2).
【解析】試題分析:本題的關(guān)鍵是求出AC,BD的長,可過A,D分別作BC的垂線AE,DF,在直角三角形BFD中,可根據(jù)兩底的差求出BE,CF的長,也就求出了BF,CE的長,要求BD還需知道直角三角形中一個銳角的度數(shù),可通過全等三角形ACB和DBC得出∠DBC=∠ACB=45°,由此可得出BD,AC的長,進而根據(jù)題目給出的面積計算方法求出梯形的面積.
試題解析:(1)敘述:對角線互相垂直的四邊形的面積等于對角線乘積的一半;
(2)過A,D分別作BC的垂線AE,DF,
∵四邊形ABCD為等腰梯形,
∵BD=AC,AB=CD,BC=BC
∴△ABC≌△DBC
∴∠ACB=∠DBC=45°,
在直角三角形BPC中,∠DBC=45°,BP=同理可得PD= ,BD=BP+PD=5.
又等腰梯形對角線相等,即BD=AC=5cm
∴S梯形=BDAC=25(cm2);
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=6,點F是AB的中點,E為BC邊上一點,且EF⊥ED,連結(jié)DF,M為DF的中點,連結(jié)MA,ME.若AM⊥ME,則AE的長為( )
A.5
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:矩形ABCD的頂點B、C在x軸的正半軸上,A、D在拋物線上,矩形的頂點均為動點,且矩形在拋物線與軸圍成的區(qū)域里。
(1)設(shè)A點的坐標為(, ),試求矩形周長關(guān)于變量的函數(shù)表達式;
(2)是否存在這樣的矩形,它的周長為9,試證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
國際比賽的足球場長在100m到110m之間,寬在64m到75m之間,為了迎接2015年的亞洲杯,某地建設(shè)了一個長方形的足球場,其長是寬的1.5倍,面積是7560m2.請你判斷這個足球場能用于國際比賽嗎?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系中O是原點,ABCD的頂點A,C的坐標分別是(8,0),(3,4),點D,E把線段OB三等分,延長CD、CE分別交OA、AB于點F,G,連接FG.則下列結(jié)論:
①F是OA的中點;②△OFD與△BEG相似;③四邊形DEGF的面積是 ;④OD=
其中正確的結(jié)論是(填寫所有正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實驗探究:
(1)如圖1,對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開;再一次折疊紙片,使點A落在EF上,并使折痕經(jīng)過點B,得到折痕BM,同時得到線段BN,MN.請你觀察圖1,猜想∠MBN的度數(shù)是多少,并證明你的結(jié)論.
(2)將圖1中的三角形紙片BMN剪下,如圖2,折疊該紙片,探究MN與BM的數(shù)量關(guān)系,寫出折疊方案,并結(jié)合方案證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:三角形任意兩邊的“極化值”等于第三邊上的中線和這邊一半的平方差.如圖1,在△ABC中,AO是BC邊上的中線,AB與AC的“極化值”就等于AO2﹣BO2的值,可記為AB△AC=AO2﹣BO2 .
(1)在圖1中,若∠BAC=90°,AB=8,AC=6,AO是BC邊上的中線,則AB△AC= , OC△OA=;
(2)如圖2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;
(3)如圖3,在△ABC中,AB=AC,AO是BC邊上的中線,點N在AO上,且ON= AO.已知AB△AC=14,BN△BA=10,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com