【題目】如圖,直線l與⊙O相離,OA⊥ 于點A,與⊙O相交于點P,OA=5.C是直線上一點,連結(jié)CP并延長交⊙O于另一點B,且AB=AC.
(1)求證:AB是⊙O的切線;
(2)若⊙O的半徑為3,求線段BP的長.
【答案】(1)見解析;(2).
【解析】
(1)連接OB,由AB=AC得∠ABC=∠ACB,由OP=OB得∠OPB=∠OBP,由OA⊥得∠OAC=90°,則∠ACB+∠APC=90°,而∠APC=∠OPB=∠OBP,所以∠OBP+∠ABC=90°,即∠OBA=90°,于是根據(jù)切線的判定定理得到直線AB是⊙O的切線;
(2)根據(jù)勾股定理求得AB=4,PC=,過O作OD⊥PB于D,則PD=DB,通過證得△ODP∽△CAP,得到 求得PD,即可求得PB.
(1)證明:如圖,連結(jié)OB,則OP=OB,
∴∠OBP=∠OPB=∠CPA,
AB=AC,
∴∠ACB=∠ABC,
而OA⊥,即∠OAC=90°,
∴∠ACB+∠CPA=90°,
即∠ABP+∠OBP=90°,
∴∠ABO=90°,
OB⊥AB,
故AB是⊙O的切線;
(2)解:由(1)知:∠ABO=90°,
而OA=5,OB=OP=3,
由勾股定理,得:AB=4,
過O作OD⊥PB于D,則PD=DB,
∵∠OPD=∠CPA,∠ODP=∠CAP=90°,
∴△ODP∽△CAP,
∴
又∵AC=AB=4,AP=OA﹣OP=2,
∴
∴
∴
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如果一個圖形向右平移1個單位,再向上平移3個單位,稱為一個變換,已知點,經(jīng)過一個變換后對應(yīng)點為,經(jīng)過2個變換后對應(yīng)點為,經(jīng)過個變換后對應(yīng)點為,則用含的代數(shù)式教示點的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校準(zhǔn)備購進一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需26元;3只A型節(jié)能燈和2只B型節(jié)能燈共需29元.
(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價各是多少元;
(2)學(xué)校準(zhǔn)備購進這兩種型號的節(jié)能燈共50只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的3倍,請設(shè)計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖像與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C.
(1)求線段BC的長;
(2)當(dāng)0≤y≤3時,請直接寫出x的范圍;
(3)點P是拋物線上位于第一象限的一個動點,連接CP,當(dāng)∠BCP=90o時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓心在坐標(biāo)原點的⊙O,與坐標(biāo)軸的交點分別為A、B和C、D.弦CM交OA于P,連結(jié)AM,已知tan∠PCO=,PC、PM是方程x2﹣px+20=0的兩根.
(1)求C點的坐標(biāo);
(2)寫出直線CM的函數(shù)解析式;
(3)求△AMC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,輪船從B處以每小時60海里的速度沿南偏東20°方向勻速航行,在B處觀測燈塔A位于南偏東50°方向上,輪船航行20分鐘到達C處,在C處觀測燈塔A位于北偏東10°方向上,則C處與燈塔A的距離是___________海里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c的對稱軸為直線x=﹣,與x軸交于點A和點B(1,0),與y軸交于點C,點D為線段AC的中點,直線BD與拋物線交于另一點E,與y軸交于點F.
(1)求拋物線的解析式;
(2)點P是直線BE上方拋物線上一動點,連接PD、PF,當(dāng)△PDF的面積最大時,在線段BE上找一點G,使得PG﹣EG的值最小,求出PG﹣EG的最小值.
(3)如圖2,點M為拋物線上一點,點N在拋物線的對稱軸上,點K為平面內(nèi)一點,當(dāng)以A、M、N、K為頂點的四邊形是正方形時,請求出點N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,圓O是△ABC的外接圓,AO平分∠BAC.
(1)求證:△ABC是等腰三角形;
(2)當(dāng)OA=4,AB=6,求邊BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=2AB.將矩形ABCD對折,得到折痕MN;沿著CM折疊,點D的對應(yīng)點為E,ME與BC的交點為F;再沿著MP折疊,使得AM與EM重合,折痕為MP,此時點B的對應(yīng)點為G.下列結(jié)論:
①△CMP是直角三角形;
②點C、E、G不在同一條直線上;
③PC=MP;
④BP=AB;
⑤PG=2EF.
其中一定成立的是_____(把所有正確結(jié)論的序號填在橫線上).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com