【題目】如圖,OA⊥OC,OB⊥OD,下面結(jié)論:①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC﹣∠COD=∠BOC中,正確的有________(填序號).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)填入相應(yīng)的集合.
-17,6.8,+48,0,,-7.9,-π,-5,-,,29,-20%
正數(shù)集合:{________________________________…};
負(fù)分?jǐn)?shù)集合:{________________________________…};
整數(shù)集合:{________________________________…}.
非負(fù)整數(shù)集合{________________________________…}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015年1月,市教育局在全市中小學(xué)中選取了63所學(xué)校從學(xué)生的思想品德、學(xué)業(yè)水平、學(xué)業(yè)負(fù)擔(dān)、身心發(fā)展和興趣特長五個維度進行了綜合評價.評價小組在選取的某中學(xué)七年級全體學(xué)生中隨機抽取了若干名學(xué)生進行問卷調(diào)查,了解他們每天在課外用于學(xué)習(xí)的時間,并繪制成如下不完整的統(tǒng)計圖. 根據(jù)上述信息,解答下列問題:
(1)本次抽取的學(xué)生人數(shù)是 ______ ;扇形統(tǒng)計圖中的圓心角α等于 ______ ;補全統(tǒng)計直方圖;
(2)被抽取的學(xué)生還要進行一次50米跑測試,每5人一組進行.在隨機分組時,小紅、小花兩名女生被分到同一個小組,請用列表法或畫樹狀圖求出她倆在抽道次時抽在相鄰兩道的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是矩形,點的坐標(biāo)為(0,6),點的坐標(biāo)為(4,0),點從點出發(fā),沿以每秒2個單位長度的速度向點出發(fā),同時點從點出發(fā),沿以每秒3個單位長度的速度向點運動,當(dāng)點與點重合時,點、同時停止運動.設(shè)運動時間為秒.
(1)當(dāng)時,請直接寫出的面積為_____________;
(2)當(dāng)與相似時,求的值;
(3)當(dāng)反比例函數(shù)的圖象經(jīng)過點、兩點時,
①求的值;
②點在軸上,點在反比例函數(shù)的圖象上,若以點、、、為頂點的四邊形是平行四邊形,請直接寫出所有滿足條件的的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程(a﹣1)x2+2x+a﹣1=0.
(1)若該方程有一根為2,求a的值及方程的另一根;
(2)當(dāng)a為何值時,方程僅有一個根?求出此時a的值及方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點是的中點,點是線段的延長線上的一動點,連接,過點作的平行線,與線段的延長線交于點,連接、.
求證:四邊形是平行四邊形.
若,,則在點的運動過程中:
①當(dāng)________時,四邊形是矩形,試說明理由;
②當(dāng)________時,四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請同學(xué)們完成下列甲,乙兩種商品從包裝到銷售的一系列問題;
(1)某包裝車間有22名工人,每人每小時可以包裝120個甲商品或者200個乙商品,且1個甲商品需要搭配2個乙商品裝箱,為使每天包裝的甲商品和乙商品剛好配置,應(yīng)安排包裝甲商品和乙商品的工人各多少名?
(2)某社區(qū)超市第一次用6000元購進一批甲、乙兩種商品,其中甲商品的件數(shù)比乙商品件數(shù)的2倍少30件,兩種商品的進價和售價如下圖所示:
甲 | 乙 | |
進價(元/件) | 22 | 30 |
售價(元/件) | 29 | 40 |
①超市將這批貨全部售出一共可以獲利多少元?
②該超市第二次分別以第一次同樣的進價購進第二批甲、乙兩種商品,其中乙商品的件數(shù)是第一批乙商品件數(shù)的3倍,甲商品的件數(shù)不變,甲商品按照原售價銷售,乙商品在原價的基礎(chǔ)上打折銷售,第二批商品全部售出后獲得的總利潤比第一批獲得的總利潤多720元,求第二批乙商品在原價基礎(chǔ)上打幾折銷售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BD是ABCD對角線,AE⊥BD于點E,CF⊥BD于點F.
(1)求證:△ADE≌△CBF;
(2)連結(jié)CE,AF,求證:四邊形AFCE為平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com