如圖,在Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,P為BC的中點(diǎn).動(dòng)點(diǎn)Q從點(diǎn)P出發(fā),沿射線PC方向以2cm/s的速度運(yùn)動(dòng),以P為圓心,PQ長(zhǎng)為半徑作圓.設(shè)點(diǎn)Q運(yùn)動(dòng)的時(shí)間為t s.   
 (1)當(dāng)t=1.2時(shí),判斷直線AB與⊙P的位置關(guān)系,并說(shuō)明理由;
 (2)已知圓O為△ABC的外接圓,若OP與圓O相切,求t的值.

解:(l)直線AB與圓P相切,
如圖,過(guò)點(diǎn)P作PD⊥AB,垂足為D.    
在Rt△ABC中,∠ACB=90°,
∵AC=6 cm,BC=8 cm,    
∴AB= ( cm).
∴P為BC的中點(diǎn),
∴PB=4 cm.    
∵∠PDB=∠ACB= 90°,∠PBD=∠ABC.
∴△PBD∽△ABC.    

∴PD =2. 4(cm).   
 當(dāng)t=1.2時(shí).PQ=2t=2.4(cm)  
∴PD= PQ,即圓心P到直線AB的距離等于圓P的半徑.    
∴直線AB與圓P相切.
(2) ∠ACB=90°,
∴AB為△ABC的外切圓的直徑.
∴OB=AB=5(cm).    
連接OP,
∵P為BC的中點(diǎn),
∴OP=AC=3cm    
∴點(diǎn)P在圓O內(nèi)部,
∴圓P與圓O只能內(nèi)切.   
 ∴5- 2t=3或2t-5=3,
∴t=1或4.    
∴圓P與圓O相切時(shí),t的值為1或4.
練習(xí)冊(cè)系列答案
  • 高中暑假作業(yè)浙江教育出版社系列答案
  • 少年素質(zhì)教育報(bào)暑假作業(yè)系列答案
  • 金太陽(yáng)全A加系列答案
  • 創(chuàng)新導(dǎo)學(xué)案新課標(biāo)寒假假期自主學(xué)習(xí)訓(xùn)練系列答案
  • 超能學(xué)典暑假接力棒江蘇鳳凰少年兒童出版社系列答案
  • 暑假提高班系列答案
  • 完美假期暑假作業(yè)系列答案
  • 快樂(lè)假期高考狀元假期學(xué)習(xí)方案暑假系列答案
  • 豫欣圖書(shū)自主課堂系列答案
  • 假期伙伴寒假大連理工大學(xué)出版社系列答案
  • 年級(jí) 高中課程 年級(jí) 初中課程
    高一 高一免費(fèi)課程推薦! 初一 初一免費(fèi)課程推薦!
    高二 高二免費(fèi)課程推薦! 初二 初二免費(fèi)課程推薦!
    高三 高三免費(fèi)課程推薦! 初三 初三免費(fèi)課程推薦!
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    (2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過(guò)點(diǎn)D,且交AC于點(diǎn)F.
    (1)求證:BC是⊙O的切線;
    (2)若CD=6,AC=8,求AE.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
    (1)畫(huà)出符合條件的圖形.連接EF后,寫(xiě)出與△ABC一定相似的三角形;
    (2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫(xiě)出函數(shù)的定義域;
    (3)如果△CEF與△DEF相似,求AD的長(zhǎng).

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    如圖,在Rt△ABC中,BD⊥AC,sinA=
    3
    5
    ,則cos∠CBD的值是( 。

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
    5
    cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過(guò)點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
    (1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
    (t-2)
    (t-2)
    cm,(用含t的代數(shù)式表示).
    (2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
    (3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案