【題目】已知二次函數(shù)y=x2﹣2x﹣3
(1)請你把已知的二次函數(shù)化成y=(x﹣h)2+k的形式,并在平面直角坐標(biāo)系中畫出它的圖象;
(2)如果A(x1,y1)、B(x2,y2)是(1)中像上的兩點(diǎn),且x1<x2<1,請直接寫出y1、y2的大小關(guān)系為 .
(3)利用(1)中的圖象表示出方程x2﹣2x﹣1=0的根,畫在(1)的圖象上即可,要求保留畫圖痕跡.
【答案】(1)畫圖見解析;(2)y1>y2;(3)如圖,x1、x2為方程x2﹣2x﹣1=0的兩根.
【解析】
(1)先把解析式配成頂點(diǎn)式得到拋物線的頂點(diǎn)坐標(biāo)為(1,-4),再求出拋物線與y軸的交點(diǎn)坐標(biāo)和拋物線與x軸的交點(diǎn)坐標(biāo),然后利用描點(diǎn)法畫出二次函數(shù)圖象;
(2)利用二次函數(shù)的性質(zhì)解決問題;
(3)作直線y=-2與拋物線的交點(diǎn),則兩交點(diǎn)的橫坐標(biāo)為方程x2-2x-1=0的兩根.
(1)y=x2﹣2x﹣3=(x﹣1)2﹣4,
拋物線的頂點(diǎn)坐標(biāo)為(1,﹣4),
當(dāng)x=0時(shí),y=x2﹣2x﹣3=﹣3,則拋物線與y軸的交點(diǎn)坐標(biāo)為(0,﹣3),
當(dāng)y=0時(shí),x2﹣2x﹣3=0,解得x1=﹣1,x2=3,拋物線與x軸的交點(diǎn)坐標(biāo)為(﹣1,0),(3,0),
如圖,
(2)拋物線的對稱軸為直線x=1,
∵x1<x2<1,請
∴y1>y2;
故答案為y1>y2;
(3)如圖,x1、x2為方程x2﹣2x﹣1=0的兩根.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列表格的對應(yīng)值:
x | 3.23 | 3.24 | 3.25 | 3.26 |
-0.06 | -0.02 | 0.03 | 0.09 |
寫出方程(a≠0,a,b,c為常數(shù))一個(gè)解x的范圍是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】市“健益”超市購進(jìn)一批元/千克的綠色食品,如果以元/千克銷售,那么每天可售出千克.由銷售經(jīng)驗(yàn)知,每天銷售量(千克)與銷售單價(jià)(元)存在如下圖所示的一次函數(shù)關(guān)系.
試求出與的函數(shù)關(guān)系式;
設(shè)“健益”超市銷售該綠色食品每天獲得利潤為元,當(dāng)銷售單價(jià)為何值時(shí),每天可獲得最大利潤?最大利潤是多少?
根據(jù)市場調(diào)查,該綠色食品每天可獲利潤不超過元,現(xiàn)該超市經(jīng)理要求每天利潤不得低于元,請你幫助該超市確定綠色食品銷售單價(jià)的范圍(直接寫出).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b都是正整數(shù),且拋物線y=ax2+bx+l與x軸有兩個(gè)不同的交點(diǎn)A、B.若A、B到原點(diǎn)的距離都小于1,則a+b的最小值等于( 。
A. 16 B. 10 C. 4 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△OAB的頂點(diǎn)A、B的坐標(biāo)分別為(4,0)、(4,n),若經(jīng)過點(diǎn)O、A的拋物線y=﹣x2+bx+c的頂點(diǎn)C落在邊OB上,則圖中陰影部分圖形的面積和為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,等腰Rt△ABC,等腰Rt△ADE,AB⊥AC,AD⊥AE,AB=AC,AD=AE,CD交AE、BE分別于點(diǎn)M、F.
(1)求證:△DAC≌△EAB.
(2)求證:CD⊥BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,,點(diǎn)從點(diǎn)出發(fā),先移動到軸上的點(diǎn)處,再沿垂直于軸的方向向左移動1個(gè)單位至點(diǎn)處,最后移動到點(diǎn)處停止.當(dāng)點(diǎn)移動的路徑最短時(shí) (即三條線段、、長度之和最小),點(diǎn)的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(-3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對對稱點(diǎn),一次函數(shù)的圖象過點(diǎn)B、D.
(1)求點(diǎn)D坐標(biāo)及二次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)D,E分別是△ABC的邊BA和BC延長線上的點(diǎn),作∠DAC的平分線AF,若AF∥BC.
(1)求證:△ABC是等腰三角形;
(2)作∠ACE的平分線交AF于點(diǎn)G,若∠B=40°,求∠AGC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com