如圖,PA、PB分別是⊙O的切線(xiàn),A、B為切點(diǎn),AC是⊙O的直徑,∠BAC=35°,∠P的度數(shù)為( 。
分析:根據(jù)切線(xiàn)的性質(zhì)求出∠PAB,根據(jù)切線(xiàn)長(zhǎng)定理得等腰△PAB,運(yùn)用內(nèi)角和定理求解.
解答:解:∵PA、PB分別是⊙O的切線(xiàn),A、B為切點(diǎn),AC是⊙O的直徑,
∴∠CAP=90°,PA=PB,
又∵∠BAC=35°,
∴∠PAB=55°,
∴∠PBA=∠PAB=55°,
∴∠P=180°-55°-55°=70°.
故選D.
點(diǎn)評(píng):此題綜合運(yùn)用了切線(xiàn)的性質(zhì)和切線(xiàn)長(zhǎng)定理,解答本題需要判斷出△PAB為等腰三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,PA、PB分別切圓O于A、B兩點(diǎn),C為劣弧AB上一點(diǎn),已知∠P=50°,則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,PA、PB分別切圓O于A、B兩點(diǎn),C為劣弧AB上一點(diǎn),∠APB=30°,則∠ACB=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,PA,PB分別切⊙O于點(diǎn)A,B,點(diǎn)C是AB上一點(diǎn),過(guò)C作⊙O的切線(xiàn),交PA,PB于點(diǎn)D,E,若PA=6cm,則△PDE的周長(zhǎng)是
12
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•綿陽(yáng))如圖,PA、PB分別切⊙O于A、B,連接PO、AB相交于D,C是⊙O上一點(diǎn),∠C=60°.
(1)求∠APB的大;
(2)若PO=20cm,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,PA,PB分別切⊙O于點(diǎn)A和點(diǎn)B,C是
AB
上任一點(diǎn),過(guò)C的切線(xiàn)分別交PA,PB于D,E.若⊙O的半徑為6,PO=10,則△PDE的周長(zhǎng)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案