【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線PA是一次函數(shù)的圖象,直線PB是一次函數(shù)的圖象,點(diǎn)P是兩直線的交點(diǎn),點(diǎn)A、BC、Q分別是兩條直線與坐標(biāo)軸的交點(diǎn).若四邊形PQOB的面積是5.5,且,若存在一點(diǎn)D,使以A、B、PD為頂點(diǎn)的四邊形是平行四邊形,則點(diǎn)D的坐標(biāo)為________

【答案】,,,

【解析】

已知直線解析式,令,求出的值,可求出點(diǎn),的坐標(biāo).聯(lián)立方程組求出點(diǎn)的坐標(biāo);先根據(jù)得到的關(guān)系,然后求出并都用字母表示,根據(jù),列式求出的值,得出點(diǎn)的坐標(biāo);根據(jù)圖形以、、、為頂點(diǎn)的四邊形是平行四邊形,如圖所示,求出滿足題意,,的坐標(biāo).

解:在直線中,令,得

點(diǎn)

在直線中,令,得,

點(diǎn),

,得,

點(diǎn),

,

,

整理得,

,

,

由題意得:

解得:,

,

,

,,,,

存在一點(diǎn),使以、、為頂點(diǎn)的四邊形是平行四邊形,

過點(diǎn)作直線平行于軸,過點(diǎn)的平行線交于點(diǎn),過點(diǎn)的平行線交于點(diǎn),過點(diǎn)分別作、的平行線交于點(diǎn)

,

是平行四邊形.此時(shí),由點(diǎn)的平移規(guī)律可知P點(diǎn)向右平移6個(gè)單位得到,;

,

是平行四邊形.此時(shí),由點(diǎn)的平移規(guī)律可知P點(diǎn)向左平移6個(gè)單位得到,;

,此時(shí)是平行四邊形.由點(diǎn)的平移規(guī)律可知A點(diǎn)向右平移個(gè)單位,向下平移得到,

故答案為:,,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格中的每個(gè)小方格都是邊長為1的正方形,我們把以格點(diǎn)間的連線為邊的三角形稱為格點(diǎn)三角形,圖中的ABC是格點(diǎn)三角形.在建立平面直角坐標(biāo)系后,點(diǎn)B的坐標(biāo)為(-1,-1).

(1)ABC向左平移8格后得到A1B1C1,畫出A1B1C1的圖形并寫出點(diǎn)B1的坐標(biāo);

(2)ABC繞點(diǎn)C按順時(shí)針旋轉(zhuǎn)90°后得A2B2C2,畫出A2B2C2的圖形并寫出B2的坐標(biāo);

(3)ABC以點(diǎn)A為位似中心放大,使放大前后對應(yīng)邊的比為12,畫出AB3C3的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小剛用如圖所示的兩個(gè)轉(zhuǎn)盤做配紫色游戲,游戲規(guī)則是:分別旋轉(zhuǎn)兩個(gè)轉(zhuǎn)盤,若其中一個(gè)轉(zhuǎn)盤轉(zhuǎn)出了紅色,另一個(gè)轉(zhuǎn)出了藍(lán)色,則可以配成紫色.此時(shí)小剛獲勝,否則小明獲勝.

1)利用畫樹狀圖或列表法表示游戲所有可能出現(xiàn)的結(jié)果.

2)這個(gè)游戲?qū)﹄p方公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2).延長CBx軸于點(diǎn)A1,作第1個(gè)正方形A1B1C1C;延長C1B1x軸于點(diǎn)A2,作第2個(gè)正方形A2B2C2C1,…,按這樣的規(guī)律進(jìn)行下去,第2016個(gè)正方形的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,過點(diǎn)DDEAB于點(diǎn)E,作DEBC于點(diǎn)F,連接EF,求證:

1ADE≌△CDF;

2)若∠A60°AD4,求EDF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料:

解方程x4–7x2+12=0,這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:

設(shè)x2=y,則x4=y2

∴原方程可化為y2–7y+12=0

a=1b=–7,c=12

∴△=b2–4ac=–72–4×1×12=1

y=–

解得y1=3y2=4

當(dāng)y=3時(shí),x2=3,x

當(dāng)y=4時(shí),x2=4x=±2

∴原方程有四個(gè)根是:x1=,x2=–,x3=2,x4=–2

以上方法叫換元法,達(dá)到了降次的目的,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想,運(yùn)用上述方法解答下列問題.

1)解方程:(x2+x2–5x2+x+4=0;

2)已知實(shí)數(shù)ab滿足(a2+b22–3a2+b2–10=0,試求a2+b2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

問題:已知方程x2+x﹣1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.

解:設(shè)所求方程的根為y,則y=2x,所以x=,把x=,代入已知方程,

得(2 +﹣1=0.

化簡,得y2+2y﹣4=0,

故所求方程為y2+2y﹣4=0

這種利用方程根的代換求新方程的方法,我們稱為換根法”.

請用閱讀材料提供的換根法求新方程(要求:把所求方程化為一般形式):

(1)已知方程x2+2x﹣1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為 ;

(2)已知關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是已知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一張長10 dm,寬6 dm矩形紙板,將紙板四個(gè)角各剪去一個(gè)同樣的邊長為x dm的正方形,然后將四周突出部分折起,可制成一個(gè)無蓋方盒.

1 無蓋方盒盒底的長為______dm,寬為_____dm(用含x的式子表示)

2 若要制作一個(gè)底面積是32dm2的一個(gè)無蓋長方體紙盒,求剪去的正方形邊長x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,C=90°,CA=12cm,BC=12cm;動(dòng)點(diǎn)P從點(diǎn)C開始沿CA以2cm/s的速度向點(diǎn)A移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)A開始沿AB以4cm/s的速度向點(diǎn)B移動(dòng),動(dòng)點(diǎn)R從點(diǎn)B開始沿BC以 2cm/s的速度向點(diǎn)C移動(dòng).如果P、Q、R分別從C、A、B同時(shí)移動(dòng),移動(dòng)時(shí)間為t(0<t<6)s.

(1)CAB的度數(shù)是 ;

(2)以CB為直徑的O與AB交于點(diǎn)M,當(dāng)t為何值時(shí),PM與O相切?

(3)寫出PQR的面積S隨動(dòng)點(diǎn)移動(dòng)時(shí)間t的函數(shù)關(guān)系式,并求S的最小值及相應(yīng)的t值;

(4)是否存在APQ為等腰三角形?若存在,求出相應(yīng)的t值;若不存在請說明理由.

查看答案和解析>>

同步練習(xí)冊答案