【題目】某社區(qū)有一塊空地需要綠化,某綠化組承擔(dān)了此項(xiàng)任務(wù),綠化組工作一段時(shí)間后,提高了工作效率,該綠化組完成的綠化面積 S(單位:m2)與工作時(shí)間 t(單位:h)之間的函數(shù)關(guān)系 如圖所示,則該綠化組提高工作效率前每小時(shí)完成的綠化面積是( 。
A. 150 m2 B. 300 m2 C. 330 m2 D. 450 m2
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為等邊△ABC的邊AB上一點(diǎn),且DE⊥BC,EF⊥AC,F(xiàn)D⊥AB,垂足分別為點(diǎn)E、F、D.若AB=6,則BE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】試一試,找規(guī)律
如圖,用火柴棒擺三角形圖案,第1個圖形需要3根火柴棒,第2個圖形需要5根火柴棒……
(1)按此規(guī)律,第5個圖案需要__________根火柴棒.
(2)第n個圖案需要___________根火柴棒.
(3)如果用2019根火柴棒去擺,是第____________個圖案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請你用學(xué)習(xí)“一次函數(shù)”時(shí)積累的經(jīng)驗(yàn)和方法研究函數(shù)y=|x|的圖象和性質(zhì),并解決問題.
(1)完成下列步驟,畫出函數(shù)y=|x|的圖象;
①列表、填空;
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 3 | 1 | 1 | 2 | 3 | … |
②描點(diǎn);
③連線.
(2)觀察圖象,當(dāng)x 時(shí),y隨x的增大而增大;
(3)根據(jù)圖象,不等式|x|<x+的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十九大”報(bào)告提出了我國將加大治理環(huán)境污染的力度,還我青山綠水,其中霧霾天氣讓環(huán)保和健康問題成為焦點(diǎn),為了調(diào)查學(xué)生對霧霾天氣知識的了解程度,某校在全校學(xué)生中抽取400名同學(xué)做了一次調(diào)查,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了不完整的一種統(tǒng)計(jì)圖表.
對霧霾了解程度的統(tǒng)計(jì)表
對霧霾的了解程度 | 百分比 |
A.非常了解 | 5% |
B.比較了解 | m |
C.基本了解 | 45% |
D.不了解 | n |
請結(jié)合統(tǒng)計(jì)圖表,回答下列問題:
(1)統(tǒng)計(jì)表中:m= ,n= ;
(2)請?jiān)趫D1中補(bǔ)全條形統(tǒng)計(jì)圖;
(3)請問在圖2所示的扇形統(tǒng)計(jì)圖中,D部分扇形所對應(yīng)的圓心角是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,一只螞蟻從A點(diǎn)出發(fā),沿著A-B-C-D-A…循環(huán)爬行,其中A點(diǎn)坐標(biāo)為(1,-1),B點(diǎn)坐標(biāo)為(-1,-1),C點(diǎn)坐標(biāo)為(-1,3),D點(diǎn)坐標(biāo)為(1,3),當(dāng)螞蟻爬了2 018個單位長度時(shí),它所處位置的坐標(biāo)為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=100°
(1)如圖1,OC平分∠AOB,OD、OE分別平分∠BOC和∠AOC,求∠DOE的度數(shù);
(2)當(dāng)OC為∠AOB內(nèi)任一條射線時(shí),如圖2,OD、OE仍是∠BOC和∠AOC的平分線,此時(shí)能否求出∠DOE的度數(shù)?如果能,請你求出∠DOE的度數(shù);
(3)當(dāng)OC為∠AOB外任一條射線時(shí),如圖3,OD、OE仍是∠BOC和∠AOC的平分線,此時(shí)能否求出∠DOE的度數(shù)?如果能,請你求出∠DOE的度數(shù);
(4)通過上面幾個問題探求,請你用一個結(jié)論來表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D在BC上,DE⊥AB于點(diǎn)E,DF⊥BC交AC于點(diǎn)F,BD=CF,BE=CD.若∠AFD=145°,則∠EDF=_____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com