【題目】如圖,在四邊形ABCD中,A=BCD=90°,BC=DC.延長(zhǎng)ADE點(diǎn),使DE=AB.連接CE.求E的度數(shù).

【答案】45°

【解析】

連接AC,首先根據(jù)四邊形的內(nèi)角和等于360°,結(jié)合已知條件求出∠ABC+∠ADC=180°,再利用同角的補(bǔ)角相等得到∠ABC=∠CDE,接下來(lái)依據(jù)“邊角邊”即可證得△ABC≌△EDC,再利用全等三角形的性質(zhì)求解即可.

證明:在連接AC

四邊形ABCD中,∵∠BAD=∠BCD=90°,

∴∠ABC+∠ADC=180°,

∵∠CDE+∠ADC=180°,

∴∠ABC=∠CDE,

ABCEDC中,,

∴△ABC≌△EDC(SAS),

∴∠BAC=∠CED,AC=EC

∴∠EAC=∠CED,∴∠BAC=∠CAE=BAD=,

∴∠AEC=E=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,過(guò)點(diǎn)C作CD∥x軸,與拋物線交于點(diǎn)D,若OA=1,CD=4,則線段AB的長(zhǎng)為(
A.2
B.1
C.3
D.1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】只給定三角形的兩個(gè)元素,畫(huà)出的三角形的形狀和大小是不確定的,在下列給定的兩個(gè)條件上增加一個(gè)“AB=5cm”的條件后,所畫(huà)出的三角形的形狀和大小仍不能完全確定的是( 。

A. , B. ,

C. , D. ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的直徑AB=4,C是⊙O上一點(diǎn),連接OC.過(guò)點(diǎn)C作CD⊥AB,垂足為D,過(guò)點(diǎn)B作BM∥OC,在射線BM上取點(diǎn)E,使BE=BD,連接CE.
(1)當(dāng)∠COB=60°時(shí),直接寫(xiě)出陰影部分的面積;
(2)求證:CE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形都是由同樣大小的小圓圈按一定規(guī)律所組成的,其中第①個(gè)圖形中一共有6個(gè)小圓圈,第②個(gè)圖形中一共有9個(gè)小圓圈,第③個(gè)圖形中一共有12個(gè)小圓圈,…,按此規(guī)律排列,則第⑩個(gè)圖形中小圓圈的個(gè)數(shù)為( )

A. 24 B. 27 C. 30 D. 33

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某地區(qū)5000名九年級(jí)學(xué)生體育成績(jī)狀況,隨機(jī)抽取了若干名學(xué)生進(jìn)行測(cè)試,將成績(jī)按A、B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問(wèn)題
(1)在這次抽樣調(diào)查中,一共抽取了名學(xué)生;
(2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請(qǐng)估計(jì)該地區(qū)九年級(jí)學(xué)生體育成績(jī)?yōu)锽的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3分)如圖,AD△ABC的角平分線,DE⊥AC,垂足為E,BF∥ACED的延長(zhǎng)線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個(gè)結(jié)論:①DE=DF②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰Rt△ABC中,角ACB=90°,P是線段BC上一動(dòng)點(diǎn)(與點(diǎn)B,C不重合)連接AP,延長(zhǎng)BC至點(diǎn)Q,使 CQCP,過(guò)點(diǎn)QQHAP于點(diǎn)H,交AB于點(diǎn)M

(1)∠APC=α,求∠AMQ的大。ㄓ煤恋氖阶颖硎荆;

(2)在(1)的條件下,過(guò)點(diǎn)MMEQB于點(diǎn)E,試證明 PC ME 之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為解決中小學(xué)大班額問(wèn)題,東營(yíng)市各縣區(qū)今年將改擴(kuò)建部分中小學(xué),某縣計(jì)劃對(duì)A、B兩類學(xué)校進(jìn)行改擴(kuò)建,根據(jù)預(yù)算,改擴(kuò)建2所A類學(xué)校和3所B類學(xué)校共需資金7800萬(wàn)元,改擴(kuò)建3所A類學(xué)校和1所B類學(xué)校共需資金5400萬(wàn)元.

(1)改擴(kuò)建1所A類學(xué)校和1所B類學(xué)校所需資金分別是多少萬(wàn)元?

(2)該縣計(jì)劃改擴(kuò)建A、B兩類學(xué)校共10所,改擴(kuò)建資金由國(guó)家財(cái)政和地方財(cái)政共同承擔(dān).若國(guó)家財(cái)政撥付資金不超過(guò)11800萬(wàn)元;地方財(cái)政投入資金不少于4000萬(wàn)元,其中地方財(cái)政投入到A、B兩類學(xué)校的改擴(kuò)建資金分別為每所300萬(wàn)元和500萬(wàn)元.請(qǐng)問(wèn)共有哪幾種改擴(kuò)建方案?

查看答案和解析>>

同步練習(xí)冊(cè)答案