【題目】如圖,△ABC,ADBE分別為邊BC,AC上的高線,DE為垂足,MAB的中點(diǎn),NDE的中點(diǎn)求證:

(1)△MDE是等腰三角形

(2)MN⊥DE.

【答案】(1)證明見解析(2)證明見解析

【解析】試題分析

1AD,BE分別為邊BC,AC上的高線,D,E為垂足,可得ADBBEA是直角三角形,由MAB邊的中點(diǎn),可得DM=EM=AB,就可得MDE是等腰三角形;

2)由△MDE是等腰三角形,N是底邊DE的中點(diǎn),可得MN⊥DE.

試題解析

(1)∵AD,BE分別為邊BC,AC上的高線

∴△ABD,△ABE均為Rt△.

∵M(jìn)Rt△ABD斜邊AB的中點(diǎn),

MDAB.

同理MEAB.

∴MEMD.

∴△MDE是等腰三角形.

(2)∵△MDE,MEMD,NDE的中點(diǎn),

∴MN⊥DE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形AFCG中,BD垂直平分對(duì)角線AC,交CGD,交AFB,交ACO.連接AD,BC.

(1)求證:四邊形ABCD是菱形;

(2)EAB的中點(diǎn),DEAB,求∠BDC的度數(shù);

(3)(2)的條件下,若AB=1,求菱形ABCD的對(duì)角線AC,BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)圓錐的底面半徑為3cm,母線長(zhǎng)為10cm,則這個(gè)圓錐的側(cè)面積為cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB和CD相交于點(diǎn)O,∠COE=90°,OF平分∠AOE,∠COF=24°,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x=3是方程x2﹣3mx+6m=0的一個(gè)根,則m的值為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年,我縣參加中考的學(xué)生有9883人,把數(shù)9883精確到百位并用科學(xué)計(jì)數(shù)法表示為________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=3x+2的圖象與y軸交于點(diǎn)A,與反比例函數(shù)y=(k0)在第一象限內(nèi)的圖象交于點(diǎn)B,且點(diǎn)B的橫坐標(biāo)為1.過點(diǎn)A作ACy軸交反比例函數(shù)y=(k0)的圖象于點(diǎn)C,連接BC.

(1)求反比例函數(shù)的表達(dá)式.

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,CAB=500,C=600,求DAE和BOA的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為

查看答案和解析>>

同步練習(xí)冊(cè)答案