【題目】如圖所示,平面直角坐標(biāo)系中,△ABC的邊AB在x軸上,∠C=60°,AC交y軸于點(diǎn)E,AC,BC的長(zhǎng)是方程x2﹣16x+64=0的兩個(gè)根且OA:OB=1:3,請(qǐng)解答下列問(wèn)題:
(1)求點(diǎn)C的坐標(biāo);
(2)求直線(xiàn)EB的解析式;
(3)在x軸上是否存在點(diǎn)P,使△BEP為等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)
解:解方程x2﹣16x+64=0得x1=8,x2=8,
∴AC=BC=8,
∵∠A=60°,
∴△ABC是等邊三角形,
∴AB=8,
∵OA:OB=1:3,
∴AO=2,OB=6,
過(guò)點(diǎn)C作CH⊥x軸于點(diǎn)H,則AH= AB=4,CH= AB=4 ,
∴OH=AH﹣AO=4﹣2=2,
∴C(2,4 )
(2)
解:設(shè)直線(xiàn)AE解析式為y=kx+b(k≠0),把A(﹣2,0)、C(2,4 )代入可得 ,解得 ,
∴直線(xiàn)AC的解析式為y= x+2 ,
令x=0可得y=2 ,
∴E(0,2 ),
∵B(6,0),
設(shè)直線(xiàn)BE的解析式為y=rx+s,
∴ ,解得 ,
∴直線(xiàn)BE的解析式為y=﹣ x+2
(3)
解:設(shè)P點(diǎn)坐標(biāo)為(x,0),
∵B(6,0),E(0,2 ),
∴BE= =4 ,BP=|x﹣6|,PE= = ,
若△BEP為等腰三角形,則有BP=EP、BP=BE和EP=BE三種情況,
② 當(dāng)BP=EP時(shí),則|x﹣6|= ,解得x=2,此時(shí)P點(diǎn)坐標(biāo)為(2,0);
②當(dāng)BP=BE時(shí),則4 =|x﹣6|,解得x=6+4 或x=6﹣4 ,此時(shí)P點(diǎn)坐標(biāo)為(6+4 ,0)或(6﹣4 ,0);
③當(dāng)EP=BE時(shí),則 =4 ,解得x=6或x=﹣6,當(dāng)x=6時(shí),點(diǎn)E和點(diǎn)B重合,不合題意,舍去,
∴x=﹣6,此時(shí)P點(diǎn)坐標(biāo)為(6,0);
綜上可知存在滿(mǎn)足條件的點(diǎn)P,其坐標(biāo)為(2,0)或(6+4 ,0)或(6﹣4 ,0)或(6,0).
【解析】(1)解方程x2﹣16x+64=0,可得到AC=BC=8,進(jìn)而證得△ABC是等邊三角形,得到AB=8,再由OA:OB=1:3,得到OA、OB的長(zhǎng),從而求得A、B的坐標(biāo)即可求得C的坐標(biāo);(2)應(yīng)用待定系數(shù)法即可求得直線(xiàn)AC的解析式,從而求得E的坐標(biāo),然后再根據(jù)待定系數(shù)法即可求得直線(xiàn)EB的解析式;(3)可設(shè)P點(diǎn)坐標(biāo)為(x,0),則可表示出BP、EP,且可求得BE的長(zhǎng),當(dāng)△BEP為等腰三角形時(shí),則有BP=EP、BP=BE和EP=BE三種情況,可分別得到關(guān)于x的方程,可求得x的值,則可求得P點(diǎn)坐標(biāo).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解確定一次函數(shù)的表達(dá)式的相關(guān)知識(shí),掌握確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類(lèi)問(wèn)題的一般方法是待定系數(shù)法,以及對(duì)等腰三角形的性質(zhì)的理解,了解等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱(chēng):等邊對(duì)等角).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=﹣x2+bx+c的部分圖象如圖所示,A(1,0),B(0,3).
(1)求拋物線(xiàn)的解析式;
(2)結(jié)合函數(shù)圖象,寫(xiě)出當(dāng)y<3時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是 的中點(diǎn),CE⊥AB于E,BD交CE于點(diǎn)F.
(1)求證:CF=BF;
(2)若CD=6,AC=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校計(jì)劃購(gòu)買(mǎi)籃球、排球共20個(gè),購(gòu)買(mǎi)2個(gè)籃球,3個(gè)排球,共需花費(fèi)190元;購(gòu)買(mǎi)3個(gè)籃球的費(fèi)用與購(gòu)買(mǎi)5個(gè)排球的費(fèi)用相同。
(1)籃球和排球的單價(jià)各是多少元?
(2)若購(gòu)買(mǎi)籃球不少于8個(gè),所需費(fèi)用總額不超過(guò)800元.請(qǐng)你求出滿(mǎn)足要求的所有購(gòu)買(mǎi)方案,并直接寫(xiě)出其中最省錢(qián)的購(gòu)買(mǎi)方案
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)y=3x﹣3分別交x軸,y軸于A,B兩點(diǎn),拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)A,B兩點(diǎn),點(diǎn)C是拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)(與點(diǎn)A不重合),點(diǎn)D是拋物線(xiàn)的頂點(diǎn),請(qǐng)解答下列問(wèn)題.
(1)求拋物線(xiàn)的解析式;
(2)判斷△BCD的形狀,并說(shuō)明理由;
(3)求△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,以長(zhǎng)為一邊作,,取中點(diǎn),連、、.
求證:
當(dāng)________時(shí),是等邊三角形,并說(shuō)明理由.
當(dāng)時(shí),若,取中點(diǎn),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的外角的平分線(xiàn),, 于點(diǎn).若,則的長(zhǎng)是( )
A. 2 B. 1.5 C. 1 D. 0.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為6的正三角形紙片按如下順序進(jìn)行兩次折疊,展開(kāi)后,得折痕(如圖①),為其交點(diǎn).
(1)探求與的數(shù)量關(guān)系,并說(shuō)明理由;
(2)如圖②,若分別為上的動(dòng)點(diǎn).
①當(dāng)的長(zhǎng)度取得最小值時(shí),求的長(zhǎng)度;
②如圖③,若點(diǎn)在線(xiàn)段上,,則的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象如圖所示,它與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),與y軸的交點(diǎn)坐標(biāo)為(0,3).
(1)求出b、c的值,并寫(xiě)出此二次函數(shù)的解析式;
(2)根據(jù)圖象,直接寫(xiě)出函數(shù)值y為正數(shù)時(shí),自變量x的取值范圍;
(3)當(dāng)2≤x≤4時(shí),求y的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com