精英家教網 > 初中數學 > 題目詳情

【題目】下面是小東設計的“作平行四邊形一邊中點”的尺規(guī)作圖過程.

已知:平行四邊形ABCD.

求作:點M,使點M為邊AD的中點.

作法:如圖,

①作射線BA;

②以點A為圓心,CD長為半徑畫弧,交BA的延長線于點E;

③連接ECAD于點M

所以點M就是所求作的點.

根據小東設計的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補全圖形(保留作圖痕跡);

2)完成下面的證明.

證明:連接ACED

四邊形ABCD是平行四邊形,

AE= ,

四邊形EACD是平行四邊形( )(填推理的依據).

)(填推理的依據).

M為所求作的邊AD的中點.

【答案】(1)詳見解析;(2));一組對邊平行且相等的四邊形是平行四邊形;平行四邊形的對角線互相平分.

【解析】

1)根據題意作圖即可

2)根據平行四邊形的判定和性質即可得出答案.

解:(1)補全的圖像如圖所示:

2)因為,則要使得四邊形EACD是平行四邊形,則缺少,故答案為,推理依據為一組對邊平行且相等的四邊形是平行四邊形;根據平行四邊形的性質可知平行四邊形的對角線互相平分.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如果三個數a、b、c滿足其中一個數的兩倍等于另外兩個數的和,我們稱這三個數a、b、c等差數若正比例函數y2x的圖象上有三點Am1,y1)、Bm,y2)、C2m+1y3),且這三點的縱坐標y1、y2、y3等差數,則m_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+ca0)與x軸交于A﹣2,0)、B4,0)兩點,與y軸交于點C,且OC=2OA

1)試求拋物線的解析式;

2)直線y=kx+1k0)與y軸交于點D,與拋物線交于點P,與直線BC交于點M,記m=,試求m的最大值及此時點P的坐標;

3)在(2)的條件下,點Qx軸上的一個動點,點N是坐標平面內的一點,是否存在這樣的點Q、N,使得以P、D、Q、N四點組成的四邊形是矩形?如果存在,請求出點N的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知扇形AOB的圓心角為120°,點C是半徑OA上一點,點D上一點.將扇形AOB沿CD對折,使得折疊后的圖形恰好與半徑OB相切于點E.若∠OCD45°,OC+1,則扇形AOB的半徑長是(  )

A. 2+B. 2+C. 2D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知開口向下的拋物線yax22ax+3x軸的交點為A、B兩點(點A在點B的左邊),與y軸的交點為C,OC3OA

1)請直接寫出該拋物線解析式;

2)如圖,D為拋物線的頂點,連接BD、BC,P為對稱軸右側拋物線上一點.若∠ABD=∠BCP,求點P的坐標

3)在(2)的條件下,M、N是拋物線上的動點.若∠MPN90°,直線MN必過一定點,請求出該定點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,E是邊AB上的一動點,點F在邊BC的延長線上,且,連接DE,DF,EF. FH平分BD于點H.

1)求證:;

2)求證:

3)過點H于點M,用等式表示線段AB,HMEF之間的數量關系,并證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,OAOBABx軸于點C,點A,1)在反比例函數y=的圖像上.

1k= ;

2)在x軸的負半軸上存在一點 P ,使得SAOP=SAOB,求點P的坐標;

3)若將BOA繞點B按逆時針方向旋轉60°得到BDE,直接寫出點E的坐標,并判斷點E是否在該反比例函數的圖像上,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某小區(qū)有一塊長為30 m,寬為24 m的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480 m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為________m.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在等腰三角形ACB中,ACBC10,AB16,D為底邊AB上一動點(不與點A,B重合),DEAC,DFBC,垂足分別為點E,F,則DE+DF等于_____

查看答案和解析>>

同步練習冊答案