【題目】為考察甲、乙兩種農(nóng)作物的長勢,研究人員分別抽取了6株苗,測得它們的高度(單位:cm)如下:
甲:98,102,100,100,101,99;乙:100,103,101,97,100,99.
(1)你認(rèn)為哪種農(nóng)作物長得高一些?說明理由;
(2)你認(rèn)為哪種農(nóng)作物長得更整齊一些?說明理由.
【答案】甲組數(shù)據(jù)的平均數(shù)為100cm;乙組數(shù)據(jù)的平均數(shù)為100cm;(2)甲種農(nóng)作物長得比較整齊.
【解析】
(1)根據(jù)平均數(shù)的計算公式分別把這6株農(nóng)作物的高度加起來,再除以6即可;
(2)先算出甲與乙的方差,再進(jìn)行比較,方差越小的,農(nóng)作物長勢越整齊,即可得出答案.
(1)甲組數(shù)據(jù)的平均數(shù)=×(98+102+100+100+101+99)=100(cm);
乙組數(shù)據(jù)的平均數(shù)=×(100+103+101+97+100+99)=100(cm);
(2)s2甲=×[(98﹣100)2+(102﹣100)2+…+(99﹣100)2]=;
s2乙=×[(100﹣100)2+(103﹣100)2+…+(100﹣99)2]=.
s2甲<s2乙.
所以甲種農(nóng)作物長得比較整齊.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與直線交于A(1,1),B兩點,與軸交于點C,直線與軸交于點D.
(1)求拋物線的對稱軸和點C的坐標(biāo);
(2)若在軸上有且只有一點P,使∠APB=90°,求的值;
(3)設(shè)直線與拋物線的對稱軸的交點為F,G是拋物線上位于對稱軸右側(cè)的一點,若,且△BCG與△BCD的面積相等,求點G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年某市學(xué)業(yè)水平體育測試即將舉行,某校為了解同學(xué)們的訓(xùn)練情況,從九年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行了體育測試(把成績分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)求本次抽測的學(xué)生人數(shù);
(2)求扇形圖中∠α的度數(shù),并把條形統(tǒng)計圖補(bǔ)充完整;
(3)在測試中甲乙、丙、丁四名同學(xué)表現(xiàn)非常優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名給大家介紹訓(xùn)練經(jīng)驗,求恰好選中甲、乙兩名同學(xué)的概率(用樹狀圖或列表法解答).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(t,y1),B(t+2,y2)在拋物線的圖象上,且﹣2≤t≤2,則線段AB長的最大值、最小值分別是( )
A. 2,2B. 2,2C. 2,2D. 2,2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等邊△ABC與正方形DEFG如圖1放置,其中D,E兩點分別在AB,BC上,且BD=BE.
(1)求∠DEB的度數(shù);
(2)當(dāng)正方形DEFG沿著射線BC方向以每秒1個單位長度的速度平移時,CF的長度y隨著運動時間變化的函數(shù)圖象如圖2所示,且當(dāng)t=時,y有最小值1;
①求等邊△ABC的邊長;
②連結(jié)CD,在平移的過程中,求當(dāng)△CEF與△CDE同時為等腰三角形時t的值;
③從平移運動開始,到GF恰落在AC邊上時,請直接寫出△CEF外接圓圓心的運動路徑的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC>AB>AC,D是邊BC上的一個動點(點D不與點B、C重合),將△ABC沿AD折疊,點B落在點B'處,連接BB',B'C,若△BCB'是等腰三角形,則符合條件的點D的個數(shù)是
A. 0個B. 1個C. 2個D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,BC=12,E為BC的中點.⊙O與邊BC相切于點E,并交邊AD于點M、N,AM=3.
(1)求⊙O的半徑;
(2)將矩形ABCD繞點E順時針旋轉(zhuǎn),旋轉(zhuǎn)角為(0°<≤90°).在旋轉(zhuǎn)的過程中,⊙O和矩形ABCD的邊是否能夠相切,若能,直接寫出相切時,旋轉(zhuǎn)角的正弦值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,△ABC中AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經(jīng)過B、M兩點的⊙O交BC于G,交AB于點F,F(xiàn)B恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當(dāng)BC=6,cosC=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文化源遠(yuǎn)流長,文學(xué)方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”某中學(xué)為了解學(xué)生對四大名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題在全校學(xué)生中進(jìn)行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下尚不完整的統(tǒng)計圖.
請根據(jù)以上信息,解決下列問題
(1)本次調(diào)查所得數(shù)據(jù)的眾數(shù)是____部,中位數(shù)是_____部;
(2)扇形統(tǒng)計圖中“4部”所在扇形的圓心角為_____度;
(3)請將條形統(tǒng)計圖補(bǔ)充完整;
(4)沒有讀過四大古典名著的兩名學(xué)生準(zhǔn)備從中各自隨機(jī)選擇一部來閱讀,求他們恰好選中同一名著的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com