【題目】越來越多的人用微信聊天、轉賬、付款等.把微信賬戶里的錢轉到銀行卡叫做提現.自2016年3月1日起,每個微信賬戶有1000元的免費提現額度,當累計提現超過這個額度時,超出的部分需要付0.1%的手續(xù)費.
(1)小明的媽媽從未提現過,此時想把微信零錢里的15000元提現,那么將收取手續(xù)費 元;
(2)小亮自2016年3月1日至今,用自己的微信賬戶共提現3次,3次提現金額和手續(xù)費分別如下:
第一次提現 | 第二次提現 | 第三次提現 | |
提現金額(元) | a | b | 3a+2b |
手續(xù)費(元) | 0 | 0.4 | 3.4 |
①二元一次方程組的相關知識求表中a、b的值;
②小明3次提現金額共計 元.
科目:初中數學 來源: 題型:
【題目】(1)問題探究:如圖①,在四邊形ABCD中,AB∥CD,E是BC的中點,AE是∠BAD的平分線,則線段AB,AD,DC之間的等量關系為 ;
(2)方法遷移:如圖②,在四邊形ABCD中,AB∥CD,AF與DC的延長線交于點F,E是BC的中點,AE是∠BAF的平分線,試探究線段AB,AF,CF之間的等量關系,并證明你的結論;
(3)聯想拓展:如圖③,AB∥CF,E是BC的中點,點D在線段AE上,∠EDF=∠BAE,試探究線段AB,DF,CF之間的數量關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC=30°.過點B作DB⊥AB交CA的延長線于點D,過點C作CE⊥AC交BA的延長線于點E,點F為AE的中點,連接CF.
(1)求證:△DBA≌△ECA;
(2)△CAF是等邊三角形嗎?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于a、b定義兩種新運算“*”和“⊕”:a*b=a+kb,a⊕b=ka+b(其中k為常數,且k≠0),若平面直角坐標系xOy中的點P(a,b),有點P′的坐標為(a*b,a⊕b)與之相對應,則稱點P′為點P的“k衍生點”.例如:P(1,4)的“2衍生點”為P′(1+2×4,2×1+4),即P′(9,6).
(1)點P(﹣1,6)的“2衍生點”P′的坐標為 ;
(2)若點P的“5衍生點”P′的坐標為(﹣3,9),求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】課上老師呈現一個問題:
下面提供三種思路:
思路一:過點F作MN∥CD(如圖甲);
思路二:過P作PN∥EF,交AB于點N;
思路三:過O作ON∥FG,交CD于點N.
解答下列問題:
(1)根據思路一(圖甲),可求得∠EFG的度數為 ;
(2)根據思路二、三分別在圖乙和圖丙中作出符合要求的輔助線;
(3)請你從思路二、思路三中任選其中一種,寫出求∠EFG度數的解答過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在電線桿上的處引拉線、固定電線桿,拉線和地面所成的角,在離電線桿米的處安置高為米的測角儀,在處測得電線桿上處的仰角為,求拉線的長(結構保留一位小數,參考數據:,)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點C是以AB為直徑的⊙O上一點,CH⊥AB于點H,過點B作⊙O的切線交直線AC于點D,點E為CH的中點,連接AE并延長交BD于點F,直線CF交AB的延長線于G.
(1)求證:AEFD=AFEC;
(2)求證:FC=FB;
(3)若FB=FE=2,求⊙O的半徑r的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調查發(fā)現,這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com