【題目】如圖,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10cm,AC=14cm,動點E以2cm/s的速度從A點向F點運動,動點G以1cm/s的速度從C點向A點運動,當(dāng)一個點到達(dá)終點時,另一個點隨之停止運動,設(shè)運動時間為t.
(1)求證:在運動過程中,不管t取何值,都有S△AED=2S△DGC .
(2)當(dāng)t取何值時,△DFE與△DMG全等.
【答案】
(1)證明:∵∠BAD=∠DAC,DF⊥AB,DM⊥AC,
∴DF=DM,
∵S△AED= AEDF,S△DGC= CGDM,
∴ = ,
∵點E以2cm/s的速度從A點向F點運動,動點G以1cm/s的速度從C點向A點運動,
∴ =2,
即 =2,
∴在運動過程中,不管取何值,都有S△AED=2S△DGC
(2)解:設(shè)時間為t時,△DFE與△DMG全等,則EF=MG,
①當(dāng)M在線段CG的延長線上時,
∵點E以2cm/s的速度從A點向F點運動,動點G以1cm/s的速度從C點向A點運動,
∴EF=AF﹣AE=10﹣2t,MG=AC﹣CG﹣AM=4﹣t,
即10﹣2t=4﹣t,
解得:t=6,
當(dāng)t=6時,MG=﹣2,所以舍去;
②當(dāng)M在線段CG上時,
∵點E以2cm/s的速度從A點向F點運動,動點G以1cm/s的速度從C點向A點運動,
∴EF=AF﹣AE=10﹣2t,MG=AM﹣(AC﹣CG)=t﹣4,
即10﹣2t=t﹣4,
解得:t= ,
綜上所述當(dāng)t= 時,△DFE與△DMG全等
【解析】(1)由角平分線的性質(zhì)可知DF=DM,所以△AED和△DEG的面積轉(zhuǎn)化為底AE和CG的比值,根據(jù)路程=速度×?xí)r間求出AE和CG的長度即可證明在運動過程中,不管取何值,都有S△AED=2S△DGC . (2)若△DFE與△DMG全等,則EF=MG,利用已知條件求出EF和MG的長度,建立方程解方程即可求出運動的時間.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,D是BC邊上一點,以DB為直徑的⊙O經(jīng)過AB的中點E,交AD的延長線于點F,連結(jié)EF.
(1)求證:∠1=∠F;
(2)若sinB=,EF=,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測得旗桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度約為( )(精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)
A.30.6 B.32.1 C.37.9 D.39.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解一元二次方程x2﹣6x﹣8=0,下列變形正確的是( 。
A. (x﹣6)2=﹣8+36 B. (x﹣6)2=8+36 C. (x﹣3)2=8+9 D. (x﹣3)2=﹣8+9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面圖形上的任意兩點P,Q,如果經(jīng)過某種變換(如:平移、旋轉(zhuǎn)、軸對稱等)得到新圖形上的對應(yīng)點P′,Q′,保持P P′= Q Q′,我們把這種對應(yīng)點連線相等的變換稱為“同步變換”。對于三種變換: ①平移、②旋轉(zhuǎn)、③軸對稱,其中一定是“同步變換”的有(填序號)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,∠A=∠B=∠C,點E在邊AB上,∠AED=60°,則一定有( )
A.∠ADE=20° B.∠ADE=30°
C.∠ADE=∠ADC D.∠ADE=∠ADC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=,AD=10,點E是CD中點,將這張紙片依次折疊兩次;第一次折疊紙片使點A與點E重合,如圖2,折痕為MN,連接ME/NE;第二次折疊紙片使點N與點E重合,如圖3,點B落到B′處,折痕為HG,連接HE,則tan∠EHG= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A.三點確定一個圓
B.平分弦的直徑垂直于弦
C.等圓中相等的圓心角所對的弧相等
D.圓周角的度數(shù)等于圓心角度數(shù)的一半
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.
(1)求點B的坐標(biāo);
(2)求證:四邊形ABCE是平行四邊形;
(3)如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com