如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),四邊形OBHC為矩形,CH的延長(zhǎng)線交拋物線于點(diǎn)D(5,2),連結(jié)BC、AD.

【小題1】求C點(diǎn)的坐標(biāo)及拋物線的解析式;
【小題2】將△BCH繞點(diǎn)B按順時(shí)針旋轉(zhuǎn)90°后再沿x軸對(duì)折得到△BEF(點(diǎn)C與點(diǎn)E對(duì)應(yīng)),判斷點(diǎn)E是否落在拋物線上,并說明理由;
【小題3】設(shè)過點(diǎn)E的直線交AB邊于點(diǎn)P,交CD邊于點(diǎn)Q. 問是否存在點(diǎn)P,使直線PQ分梯形ABCD的面積為1∶3兩部分?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由


【小題1】∵四邊形OBHC為矩形,∴CD∥AB,

又D(5,2),
∴C(0,2),OC="2" . …………………………… 2分
   解得
∴拋物線的解析式為:…… 4分
【小題2】點(diǎn)E落在拋物線上. 理由如下:……… 5分
由y = 0,得.
解得x1=1,x2="4." ∴A(4,0),B(1,0).  …………………………… 6分
∴OA=4,OB=1.
由矩形性質(zhì)知:CH=OB=1,BH=OC=2,∠BHC=90°,
由旋轉(zhuǎn)、軸對(duì)稱性質(zhì)知:EF=1,BF=2,∠EFB=90°,
∴點(diǎn)E的坐標(biāo)為(3,-1). ……………………………………………… 7分
把x=3代入,得,
∴點(diǎn)E在拋物線上. ………………………………………………………… 8分
【小題3】法一:存在點(diǎn)P(a,0),延長(zhǎng)EF交CD于點(diǎn)G,易求OF=CG=3,PB=a-1.
S梯形BCGF = 5,S梯形ADGF = 3,記S梯形BCQP = S1,S梯形ADQP = S2,
下面分兩種情形:
①當(dāng)S1∶S2 =1∶3時(shí),,
此時(shí)點(diǎn)P在點(diǎn)F(3,0)的左側(cè),則PF = 3-a,
由△EPF∽△EQG,得,則QG=9-3a,
∴CQ=3-(9-3a) ="3a" -6
由S1=2,得,解得;………………… 11分
②當(dāng)S1∶S2=3∶1時(shí),
此時(shí)點(diǎn)P在點(diǎn)F(3,0)的右側(cè),則PF = a-3,
由△EPF∽△EQG,得QG = 3a-9,∴CQ =" 3" +(3 a-9)=" 3" a-6,
由S1= 6,得,解得.
綜上所述:所求點(diǎn)P的坐標(biāo)為(,0)或(,0)……… 14分
法二:存在點(diǎn)P(a,0). 記S梯形BCQP = S1,S梯形ADQP = S2,易求S梯形ABCD = 8.
當(dāng)PQ經(jīng)過點(diǎn)F(3,0)時(shí),易求S1=5,S2 = 3,
此時(shí)S1∶S2不符合條件,故a≠3.
設(shè)直線PQ的解析式為y = kx+b(k≠0),則,解得,
. 由y = 2得x = 3a-6,∴Q(3a-6,2)…… 10分
∴CQ = 3a-6,BP = a-1,.
下面分兩種情形:
①當(dāng)S1∶S2 = 1∶3時(shí),= 2;
∴4a-7 = 2,解得;…………………………………………… 12分
②當(dāng)S1∶S2 = 3∶1時(shí),;
∴4a-7 = 6,解得;
綜上所述:所求點(diǎn)P的坐標(biāo)為(,0)或(,0)………… 14分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線與x軸交于A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3),設(shè)拋物線的頂點(diǎn)為D.
(1)求該拋物線的解析式與頂點(diǎn)D的坐標(biāo);
(2)以B、C、D為頂點(diǎn)的三角形是直角三角形嗎?為什么?
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似?若存在,請(qǐng)指出符合條件的點(diǎn)P的位置,并直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),且x1<x2,與y軸交于點(diǎn)C(0,-4),其中x1,x2是方程x2-4x-12=0的兩個(gè)根.
(1)求拋物線的解析式;
(2)點(diǎn)M是線段AB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作MN∥BC,交AC于點(diǎn)N,連接CM,當(dāng)△CMN的面積最大時(shí),求點(diǎn)M的坐標(biāo);
(3)點(diǎn)D(4,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•歷下區(qū)一模)如圖,拋物線與x軸交于A(-1,0),B(4,0)兩點(diǎn),與y軸交于C(0,3),M是拋物線對(duì)稱軸上的任意一點(diǎn),則△AMC的周長(zhǎng)最小值是
10
+5
10
+5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與y軸交于點(diǎn)A(0,4),與x軸交于B、C兩點(diǎn).其中OB、OC是方程的x2-10x+16=0兩根,且OB<OC.
(1)求拋物線的解析式;
(2)直線AC上是否存在點(diǎn)D,使△BCD為直角三角形.若存在,求所有D點(diǎn)坐標(biāo);反之說理;
(3)點(diǎn)P為x軸上方的拋物線上的一個(gè)動(dòng)點(diǎn)(A點(diǎn)除外),連PA、PC,若設(shè)△PAC的面積為S,P點(diǎn)橫坐標(biāo)為t,則S在何范圍內(nèi)時(shí),相應(yīng)的點(diǎn)P有且只有1個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與x軸交于A、B(6,0)兩點(diǎn),且對(duì)稱軸為直線x=2,與y軸交于點(diǎn)C(0,-4).
(1)求拋物線的解析式;
(2)點(diǎn)M是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),連接MA、MC,當(dāng)△MAC的周長(zhǎng)最小時(shí),求點(diǎn)M的坐標(biāo);
(3)點(diǎn)D(4,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形,如果存在,直接寫出所有滿足條件的點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案