求證:過圓內(nèi)接四邊形各邊的中點(diǎn)向?qū)吽鞯?條垂線交于一點(diǎn).
分析:此題首先過圓內(nèi)接四邊形兩邊的中點(diǎn)向?qū)呉咕,產(chǎn)生交點(diǎn),然后再進(jìn)一步證明過另外兩邊的中點(diǎn)和交點(diǎn)的直線垂直于對邊即可.根據(jù)三角形的中位線定理、垂徑定理、平行四邊形的判定和性質(zhì)即可證明.
解答:
證明:圓內(nèi)接四邊形ABCD,O為圓心,LR、EF為符合題意的線段,相交于K,連接LO、FO.
設(shè)M、G分別為AD、BC的中點(diǎn),連接LM、MF、FG、GL,連接MK、KG、GO、OM.
∵L、F分別為AB、DC的中點(diǎn),
∴LO⊥AB、OF⊥DC,
同時EF⊥AB,LR⊥DC,
∴LO∥EF,OF∥LR,
∴LOFK為平行四邊形,
∴LO=KF.
連接AC、BD.根據(jù)中位線定理和平行四邊形的判定,易證明四邊形LGFM為平行四邊形.
則LG=MF,
又LG∥MF,LO∥KF,
∴∠GLO=∠MFK,
∴△LGO≌△MFK,
∴OG=MK,
同理KG=OM.
故OGKM為平行四邊形.
∴MO∥KG,MK∥OG.
綜上,LR、EF、MQ、GP同為符合題意的線段.
所以過圓內(nèi)接四邊形各邊的中點(diǎn)向?qū)吽鞯?條垂線交于一點(diǎn).
點(diǎn)評:此題綜合考查了垂徑定理、三角形的中位線定理、平行四邊形的判定和性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,圓內(nèi)接四邊形ABCD,過C點(diǎn)作對角線BD的平行線交AD的延長線于E點(diǎn).
求證:DE•AB=BC•CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,圓內(nèi)接四邊形ABCD的對角線AC平分∠BCD,BD交AC于點(diǎn)F,過點(diǎn)A作圓的切線AE交CB的延長線于E.求證:①AE∥BD;  ②AD2=DF•AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們學(xué)過圓內(nèi)接三角形,同樣,四個頂點(diǎn)在圓上的四邊形是圓內(nèi)接四邊形,下面我們來研究它的性質(zhì).
(I)如圖(1),連接AO、OC,則有∠B=
1
2
∠1
∠D=
1
2
∠2
.∵∠1+∠2=360°∴∠B+∠D=
1
2
×360°=180°
,同理∠BAD+∠BCD=180°,即圓內(nèi)接四邊形對角(相對的兩個角)互補(bǔ).
(II)在圖(2)中,∠ECD是圓內(nèi)接四邊形ABCD的一個外角,請你探究外角∠DCE與它的相鄰內(nèi)角的對角(簡稱內(nèi)對角)∠A的關(guān)系,并證明∠DCE與∠A的關(guān)系.
(III)應(yīng)用:請你應(yīng)用上述性質(zhì)解答下題:如圖(3)已知ABCD是圓內(nèi)接四邊形,F(xiàn)、E分別為BD、AD延長線上的點(diǎn),如果DE平分
∠FDC,求證:AB=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

求證:過圓內(nèi)接四邊形各邊的中點(diǎn)向?qū)吽鞯?條垂線交于一點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案