【題目】如圖,把一根繩子對折成線段AB,從點P處把繩子剪斷,已知APBP=2:3,若剪斷后的各段繩子中最長的一段為60 cm,求繩子的原長.

【答案】(1)150cm (2)繩子的原長為150cm或100cm

【解析】

分點A和點B是對折點兩種情況分別進行討論,即可得出答案.

(1)當點A是繩子的對折點時,將繩子展開,如圖①所示,

因為AP:BP=2:3,剪斷后的各段繩子中最長的一段為60 cm,

所以2AP=60 cm,所以AP=30 cm,

所以BP=45 cm,

所以繩子的原長為2AB=2(AP+BP)=2×(30+45)=150(cm);

(2)當點B是繩子的對折點時,將繩子展開,如圖②所示,

因為AP:BP=2:3,剪斷后的各段繩子中最長的一段為60 cm,

所以2BP=60 cm,所以BP=30 cm,

所以AP=20 cm,

所以繩子的原長為2AB=2(AP+BP)=2×(20+30)=100(cm).

綜上,繩子的原長為150 cm100 cm..

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個長方形運動場被分隔成A,B,A,B,C共5個區(qū),A區(qū)是邊長為a m的正方形,C區(qū)是邊長為c m的正方形.

(1)列式表示每個B區(qū)長方形場地的周長,并將式子化簡;

(2)列式表示整個長方形運動場的周長,并將式子化簡;

(3)如果a=40,c=10,求整個長方形運動場的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直線上順次取 A,B,C 三點,分別以 AB,BC 為邊長在直線的同側作正三角形, 作得兩個正三角形的另一頂點分別為 DE

(1)如圖①,連結 CDAE,求證:CDAE;

(2)如圖②,若 AB1BC2,求 DE 的長;

(3)如圖③,將圖②中的正三角形 BCE B 點作適當?shù)男D,連結 AE,若有 DE2BE2AE2,試求∠DEB 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=kx+b經過點A(5,0),B(1,4).

(1)求直線AB的解析式;

(2)若直線y=2x﹣4與直線AB相交于點C,求點C的坐標;

(3)根據(jù)圖象,寫出關于x的不等式2x﹣4>kx+b的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列哪組條件能夠判別四邊形ABCD是平行四邊形?(  。

A. AB∥CD,AD=BC B. AB=CD,AD=BC

C. ∠A=∠B,∠C=∠D D. AB=AD,CB=CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OD平分∠BOC,OE平分∠AOC,∠BOC=60°,∠AOC=58°.

(1)求出∠AOB及其補角的度數(shù);

(2)①請求出∠DOC和∠AOE的度數(shù);

②判斷∠DOE與∠AOB是否互補,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)計算:tan260°+4sin30°cos45°
(2)解方程:x2﹣4x+3=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AD=CD,∠DAB=∠ACB=90°,過點D作DE⊥AC,垂足為F,DE與AB相交于點E.
(1)求證:ABAF=CBCD;
(2)已知AB=15cm,BC=9cm,P是線段DE上的動點.設DP=x cm,梯形BCDP的面積為ycm2
①求y關于x的函數(shù)關系式.
②y是否存在最大值?若有求出這個最大值,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 中, ,, 的平分線與的垂直平分線交于點,將沿 (, )折疊,點與點恰好重合,則的度數(shù)是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案