【題目】如圖,已知等腰直角三角形△ABC,點P是斜邊BC上一點(不與B,C重合),PE是△ABP的外接圓☉O的直徑.
(1)求證:△APE是等腰直角三角形;
(2)證明△APC≌△AEB;
(3)若☉O的直徑為2,求PC2+PB2的值
【答案】(1)見解答;(2)見解答; (3)4
【解析】
(1)由等腰直角三角形△ABC,得∠C=∠ABP=45°,則∠AEP=∠ABP=45°,由∠PAE=90°,即可解決問題;
(2)由(1)知,AP=AE,∠PAC=∠BAE,又AC=AB,即可得到△APC≌△AEB;
(3)由(2)得CP=BE,又PE是直徑,則△PBE是直角三角形,則,即可得到.
解:(1)在等腰直角三角形△ABC中,
∴∠C=∠ABP=45°,∠BAC=90°,
∴∠AEP=∠ABP=45°,
∵PE是直徑,
∴∠PAE=90°,
∴∠APE=∠AEP=45°,
∴AP=AE,
∴△APE是等腰直角三角形.
(2)∵△ABC與△APE是等腰直角三角形
∴AP=AE,AC=AB,∠CAB=∠PAE=90°,
∴∠CAB-∠PAB=∠PAE-∠PAB,
即∠PAC=∠BAE,
∴△APC≌△AEB;
(3)由△APC≌△AEB,得CP=BE,
∴PE是直徑,
∴∠PBE=90°,則△PBE是直角三角形,
∴,
∵CP=BE,PE=2,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2-2x+1=0.
(1)若方程有兩個實數(shù)根,求m的取值范圍;
(2)若方程的兩個實數(shù)根為x1,x2,且x1x2-x1-x2=,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,⊙O是△ABC的外接圓,AB是直徑,D是⊙O外一點且滿足∠DCA=∠B,連接AD.
(1)求證:CD是⊙O的切線;
(2)若AD⊥CD,CD=2,AD=4,求直徑AB的長;
(3)如圖2,當(dāng)∠DAB=45°時,AD與⊙O交于E點,試寫出AC、EC、BC之間的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的頂點分別是A(﹣3,2)B(0,4)C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C1;
(2)分別連接AB1,BA1后,求四邊形AB1A1B的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象過點A(1,0)和點C(0,3),對稱軸為直線x=1.
(1)求該二次函數(shù)的關(guān)系式和頂點坐標(biāo);
(2)結(jié)合圖象,解答下列問題:
①當(dāng)1<x<2時,求函數(shù)y的取值范圍。
②當(dāng)y<3時,求x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,∠BAD為鈍角,且AE⊥BC,A F⊥CD.
(1) 求證:A、E、C、F四點共圓;
(2) 設(shè)線段 BD與(1)中的圓交于M、N.求證:BM = ND
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣有A、B兩個大型蔬菜基地,共有蔬菜700噸.若將A基地的蔬菜全部運往甲市所需費用與B基地的蔬菜全部運往甲市所需費用相同.從A、B兩基地運往甲、乙兩市的運費單價如下表:
(1)求A、B兩個蔬菜基地各有蔬菜多少噸?
(2)現(xiàn)甲市需要蔬菜260噸,乙市需要蔬菜440噸.設(shè)從A基地運送噸蔬菜到甲市,請問怎樣調(diào)運可使總運費最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市茶葉專賣店銷售某品牌茶葉,其進價為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請回答:
(1)每千克茶葉應(yīng)降價多少元?
(2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的 幾折出售?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com