【題目】某縣有A、B兩個大型蔬菜基地,共有蔬菜700噸.若將A基地的蔬菜全部運往甲市所需費用與B基地的蔬菜全部運往甲市所需費用相同.從A、B兩基地運往甲、乙兩市的運費單價如下表:
(1)求A、B兩個蔬菜基地各有蔬菜多少噸?
(2)現(xiàn)甲市需要蔬菜260噸,乙市需要蔬菜440噸.設從A基地運送噸蔬菜到甲市,請問怎樣調運可使總運費最少?
【答案】(1)A、B兩基地的蔬菜總量分別為300噸和400噸;(2)當A基地運300噸到乙市,B基地運260噸到甲市,B基地運140噸到乙市時,總運費最少為14760元.
【解析】
(1)設A、B兩基地的蔬菜總量分別為噸、噸,根據(jù)題意列方程組求出x、y的值即可;(2)先根據(jù)題意列不等式組求出m的取值范圍,根據(jù)A、B兩基地運往甲、乙兩市的運費得出總費用w的表達式,根據(jù)一次函數(shù)的性質求出w的最小值即可得答案.
(1)設A、B兩基地的蔬菜總量分別為噸、噸.
根據(jù)題意得:
解得:,
答:A、B兩基地的蔬菜總量分別為300噸和400噸.
(2)由題可知:
∴
∵
.
∵4>0,
∴隨的增大而增大,
∴=14760.
答:當A基地運300噸到乙市,B基地運260噸到甲市,B基地運140噸到乙市時,總運費最少為14760元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰直角三角形△ABC,點P是斜邊BC上一點(不與B,C重合),PE是△ABP的外接圓☉O的直徑.
(1)求證:△APE是等腰直角三角形;
(2)證明△APC≌△AEB;
(3)若☉O的直徑為2,求PC2+PB2的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于反比例函數(shù)y=(k≠0),下列說法不正確的是( )
A. 它的圖象分布在第一、三象限 B. 點(k,k)在它的圖象上
C. 它的圖象關于原點對稱 D. 在每個象限內y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=4,若將△ABC繞點B順時針旋轉60°,點A的對應點為點A′,點C的對應點為點C′,點D為A′B的中點,連接AD.則點A的運動路徑與線段AD、A′D圍成的陰影部分面積是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在5×5的正方形網(wǎng)格,每個小正方形的邊長都為1,線段AB的端點落在格點上,要求畫一個四邊形,所作的四邊形為中心對稱圖形,同時滿足下列要求:
(1)在圖1中畫出以AB為一邊的四邊形;
(2)分別在圖2和圖3中各畫出一個以AB為一條對角線的四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線的對稱軸為直線,與軸的一個交點在和之間,其部分圖象如圖所示.則下列結論:①;②;③;④(為實數(shù));⑤點,,是該拋物線上的點,則,正確的個數(shù)有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小飛研究二次函數(shù)y=-(x-m)2-m+1(m為常數(shù))性質時如下結論:①這個函數(shù)圖象的頂點始終在直線y=-x+1上;②存在一個m的值,使得函數(shù)圖象的頂點與軸的兩個交點構成等腰直角三角形;③點A(x1,y1)與點B(x2,y2)在函數(shù)圖象上,若x1<x2,x1+x2>2m,則y1<y2;④當-1<x<2時,y隨x的增大而增大,則m的取值范圍為m≥2其中錯誤結論的序號是( )
A. ①B. ②C. ③D. ④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點C在⊙O上,AC=AB,動點P與點C位于直徑AB的異側,點P在半圓弧AB上運動(不與A.B兩點重合),連結BP,過點C作直線PB的垂線CD交直線PB于D點,連結CP.
(1)如圖1,在點P運動過程中,求∠CPD的度數(shù);
(2)如圖2,在點P運動過程中,當CP⊥AB時,AC=2時,求△BPC的周長
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com