【題目】如圖,在△ABC中,AD是BC邊上的中線,且AD=AC,DE⊥BC,DE與AB相交于點(diǎn)E,EC與AD相交于點(diǎn)F.
(1)求證:△ABC∽△FCD;
(2)過(guò)點(diǎn)A作AM⊥BC于點(diǎn)M,求DE:AM的值;
(3)若S△FCD=5,BC=10,求DE的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2);(3).
【解析】
(1)利用D是BC邊上的中點(diǎn),DE⊥BC可以得到∠EBC=∠ECB,而由AD=AC可以得到∠ADC=∠ACD,再利用相似三角形的判定定理,就可以證明題目結(jié)論;
(2)根據(jù)相似三角形的性質(zhì)和等腰三角形的性質(zhì)定理,解答即可;
(3)利用相似三角形的性質(zhì)就可以求出三角形ABC的面積,然后利用面積公式求出AM的值,結(jié)合,即可求解.
(1)∵D是BC邊上的中點(diǎn),DE⊥BC,
∴BD=DC,∠EDB=∠EDC=90°,
∵DE=DE,
∴△BDE≌△EDC(SAS),
∴∠B=∠DCE,
∵AD=AC,
∴∠ADC=∠ACB,
∴△ABC∽△FCD;
(2)∵AD=AC,AM⊥DC,
∴DM=DC,
∵BD=DC,
∴,
∵DE⊥BC,AM⊥BC,
∴DE∥AM,
∴.
(3)過(guò)點(diǎn)A作AM⊥BC,垂足是M,
∵△ABC∽△FCD,BC=2CD,
∴,
∵S△FCD=5,
∴S△ABC=20,
又∵BC=10,
∴AM=4.
∵DE∥AM,
∴
∴,
∴DE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校王老師組織九(1)班同學(xué)開(kāi)展數(shù)學(xué)活動(dòng),某天帶領(lǐng)同學(xué)們測(cè)量學(xué)校附近一電線桿的高.已知電線桿直立于地面上,在太陽(yáng)光的照射下,電線桿的影子(折線BCD)恰好落在水平地面和斜坡上,在D處測(cè)得電線桿頂端A的仰角為30°,在C處測(cè)得電線桿頂端A的仰角為45°,斜坡與地面成60°角,CD=4m,請(qǐng)你根據(jù)這些數(shù)據(jù)求電線桿的高AB.(結(jié)果用根號(hào)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“端午節(jié)”是我國(guó)的傳統(tǒng)佳節(jié),民間歷來(lái)有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對(duì)去年銷(xiāo)量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A,B,C,D表示)這四種不同口味粽子的喜愛(ài)情況,在節(jié)前對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).
請(qǐng)根據(jù)以上信息回答:
(1)將兩幅不完整的圖補(bǔ)充完整;
(2)本次參加抽樣調(diào)查的居民有多少人?
(3)若居民區(qū)有8000人,請(qǐng)估計(jì)愛(ài)吃D粽的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽(tīng)寫(xiě)”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分.為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中200名學(xué)生的成績(jī)(成績(jī)x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:
成績(jī)x/分 | 頻數(shù) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:
(1)m= ,n= ;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)若成績(jī)?cè)?/span>90分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學(xué)生中成績(jī)“優(yōu)”等約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),連接AE,BF交于點(diǎn)G,將△BCF沿BF對(duì)折,得到△BPF,延長(zhǎng)FP交BA延長(zhǎng)線于點(diǎn)Q,下列結(jié)論正確的個(gè)數(shù)是( )
①AE=BF;②AE⊥BF;③sin∠BQP=;④S四邊形ECFG=2S△BGE.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)I為△ABC的內(nèi)心,AB=4,AC=3,BC=2,將∠ACB平移使其頂點(diǎn)與I重合,則圖中陰影部分的周長(zhǎng)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在平面直角坐標(biāo)系xOy中,二次函數(shù)y=mx 2 +2mx-4(m≠0)的圖象與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,△ABC的面積為12.
(1)求這個(gè)二次函數(shù)的解析式;
(2)點(diǎn)D的坐標(biāo)為(-2,1),點(diǎn)P在二次函數(shù)的圖象上,∠ADP為銳角,且tan∠ADP=2,求出點(diǎn)P的橫坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:每個(gè)內(nèi)角都相等的八邊形叫做等角八邊形.容易知道,等角八邊形的內(nèi)角都等于135°.下面,我們來(lái)研究它的一些性質(zhì)與判定:
(1)如圖1,等角八邊形ABCDEFGH中,連結(jié)BF.
①請(qǐng)直接寫(xiě)出∠ABF+∠GFB的度數(shù).
②求證:AB∥EF.
③我們把AB與EF稱(chēng)為八邊形的一組正對(duì)邊.由②同理可得:BC與FG,CD與GH,DE與HA這三組正對(duì)邊也分別平行.請(qǐng)模仿平行四邊形性質(zhì)的學(xué)習(xí)經(jīng)驗(yàn),用一句話(huà)概括等角八邊形的這一性質(zhì).
(2)如圖2,等角八邊形ABCDEFGH中,如果有AB=EF,BC=FG,則其余兩組正對(duì)邊CD與GH,DE與HA分別相等嗎?證明你的結(jié)論.
(3)如圖3,八邊形ABCDEFGH中,若四組正對(duì)邊分別平行,則顯然有∠A=∠E,∠B=∠F,∠C=∠G,∠D=∠H.請(qǐng)?zhí)骄浚涸摪诉呅沃辽傩枰阎獛讉(gè)內(nèi)角為135°,才能保證它一定是等角八邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),拋物線與x軸交于點(diǎn)A,C(點(diǎn)A在點(diǎn)C的左側(cè)),與y軸交于點(diǎn)B,頂點(diǎn)為D.點(diǎn)Q為線段BC的三等分點(diǎn)(靠近點(diǎn)C).
(1)點(diǎn)M為拋物線對(duì)稱(chēng)軸上一點(diǎn),點(diǎn)E為對(duì)稱(chēng)軸右側(cè)拋物線上的點(diǎn)且位于第一象限,當(dāng)的周長(zhǎng)最小時(shí),求面積的最大值;
(2)在(1)的條件下,當(dāng)的面積最大時(shí),過(guò)點(diǎn)E作軸,垂足為N,將線段CN繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)N,再將點(diǎn)N向上平移個(gè)單位長(zhǎng)度.得到點(diǎn)P,點(diǎn)G在拋物線的對(duì)稱(chēng)軸上,請(qǐng)問(wèn)在平面直角坐標(biāo)系內(nèi)是否存在一點(diǎn)H,使點(diǎn)D,P,G,H構(gòu)成菱形.若存在,請(qǐng)直接寫(xiě)出點(diǎn)H的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com