【題目】如圖,BD是△ABC的角平分線(xiàn),DE∥BC,交AB于點(diǎn)E,DF∥AB,交BC于點(diǎn)F,當(dāng)△ABC滿(mǎn)足_________條件時(shí),四邊形BEDF是正方形.

【答案】∠ABC=90°

【解析】分析: 由題意知,四邊形DEBF是平行四邊形,再通過(guò)證明一組鄰邊相等,可知四邊形DEBF是菱形, 進(jìn)而得出∠ABC=90°時(shí),四邊形BEDF是正方形.

詳解: 當(dāng)△ABC滿(mǎn)足條件∠ABC=90°,四邊形DEBF是正方形.

理由:∵DE∥BC,DF∥AB,

∴四邊形DEBF是平行四邊形

BD是∠ABC的平分線(xiàn),

∴∠EBD=∠FBD,

又∵DE∥BC,

∴∠FBD=∠EDB,則∠EBD=∠EDB,

BE=DE.

故平行四邊形DEBF是菱形,

當(dāng)∠ABC=90°時(shí),菱形DEBF是正方形.

故答案為:∠ABC=90°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,∠C=90°,AB=10,BC=6,

(1)計(jì)算AC的長(zhǎng)度;

(2)計(jì)算AB邊上的中線(xiàn)CD的長(zhǎng)度.

(3)計(jì)算AB邊上的高CE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,AD⊥BD于點(diǎn)D,DE∥ACAB于點(diǎn)E,若AB=8,則DE=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)y=ax2+bx+3(a≠0)過(guò)A(4,4),B(2,m)兩點(diǎn),點(diǎn)B到拋物線(xiàn)對(duì)稱(chēng)軸的距離記為d,滿(mǎn)足0<d≤1,則實(shí)數(shù)m的取值范圍是(
A.m≤2或m≥3
B.m≤3或m≥4
C.2<m<3
D.3<m<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B坐標(biāo)為(8,4),將矩形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)B落在y軸上的點(diǎn)B′處,得到矩形OA′B′C′,OA′與BC相交于點(diǎn)D,則經(jīng)過(guò)點(diǎn)D的反比例函數(shù)解析式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)當(dāng)一次性購(gòu)物標(biāo)價(jià)總額是300元時(shí),甲、乙超市實(shí)付款分別是多少?

(2)當(dāng)標(biāo)價(jià)總額是多少時(shí),甲、乙超市實(shí)付款一樣?

(3)小王兩次到乙超市分別購(gòu)物付款198元和466元,若他只去一次該超市購(gòu)買(mǎi)同樣多的商品,可以節(jié)省多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,四邊形OABC是正方形,點(diǎn)A,C的坐標(biāo)分別為(2,0),(0,2),D是x軸正半軸上的一點(diǎn)(點(diǎn)D在點(diǎn)A的右邊),以BD為邊向外作正方形BDEF(E,F(xiàn)兩點(diǎn)在第一象限),連接FC交AB的延長(zhǎng)線(xiàn)于點(diǎn)G.若反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)E,G兩點(diǎn),則k的值為 ______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC為等邊三角形,AB=2,點(diǎn)D為邊AB上一點(diǎn),過(guò)點(diǎn)D作DE∥AC,交BC于E點(diǎn);過(guò)E點(diǎn)作EF⊥DE,交AB的延長(zhǎng)線(xiàn)于F點(diǎn).設(shè)AD=x,△DEF的面積為y,則能大致反映y與x函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,△A′B′C可以由△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對(duì)應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對(duì)應(yīng)點(diǎn),連接AB′,且A、B′、A′在同一條直線(xiàn)上,則AA′的長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案