【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B坐標(biāo)為(8,4),將矩形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)B落在y軸上的點(diǎn)B′處,得到矩形OA′B′C′,OA′與BC相交于點(diǎn)D,則經(jīng)過(guò)點(diǎn)D的反比例函數(shù)解析式是 .
【答案】y=
【解析】解:∵B(8,4), ∴OA=8,AB=OC=4,
∴A′O=OA=8,A′B′=AB=4,
tan∠COD= = ,
即 = ,
解得CD=2,
∴點(diǎn)D的坐標(biāo)為(2,4),
設(shè)經(jīng)過(guò)點(diǎn)D的反比例函數(shù)解析式為y= (k≠0),
則 =4,
解得k=8,
所以,經(jīng)過(guò)點(diǎn)D的反比例函數(shù)解析式為y= .
故答案為:y= .
利用∠COD的正切值列式求出CD的長(zhǎng)度,然后寫出點(diǎn)D的坐標(biāo),再利用待定系數(shù)法求反比例函數(shù)解析式解答即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC=30°,AB=8,AD平分∠BAC,點(diǎn)PQ分別是AB、AD邊上的動(dòng)點(diǎn),則PQ+BQ的最小值是
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OA⊥OC,OB⊥OD,①∠AOB=∠COD;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④圖中小于平角的角有6個(gè);其中正確的結(jié)論有幾個(gè)( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B兩城相距600千米,一輛客車從A城開(kāi)往B城,車速為每小時(shí)80千米,同時(shí)一輛出租車從B城開(kāi)往A城,車速為毎小時(shí)100千米,設(shè)客車出時(shí)間為t.
(1)【探究】 若客車、出租車距B城的距離分別為y1、y2 , 寫出y1、y2關(guān)于t的函數(shù)關(guān)系式,并計(jì)算當(dāng)y1=200千米時(shí)y2的値.
(2)【發(fā)現(xiàn)】 設(shè)點(diǎn)C是A城與B城的中點(diǎn),
(Ⅰ)哪個(gè)車會(huì)先到達(dá)C?該車到達(dá)C后再經(jīng)過(guò)多少小時(shí),另一個(gè)車會(huì)到達(dá)C?
(Ⅱ)若兩車扣相距100千米時(shí),求時(shí)間t.
(3)【決策】 己知客車和出租車正好在A,B之間的服務(wù)站D處相遇,此時(shí)出租車乘客小王突然接到開(kāi)會(huì)通知,需要立即返回,此時(shí)小王有兩種選擇返回B城的方案:
方案一:繼續(xù)乘坐出租車,到達(dá)A城后立刻返回B城(設(shè)出租車調(diào)頭時(shí)間忽略不計(jì));
方案二:乘坐客車返回城.
試通過(guò)計(jì)算,分析小王選擇哪種方式能更快到達(dá)B城?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)P是∠AOB角平分線上的一點(diǎn),∠AOB=60°,PD⊥OA,M是OP的中點(diǎn),DM=4cm,如果點(diǎn)C是OB上一個(gè)動(dòng)點(diǎn),則PC的最小值為( )
A.2
B.2
C.4
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是△ABC的角平分線,DE∥BC,交AB于點(diǎn)E,DF∥AB,交BC于點(diǎn)F,當(dāng)△ABC滿足_________條件時(shí),四邊形BEDF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C為AB延長(zhǎng)線上一點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AC方向以lcm/s的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)以相同的速度沿CA方向運(yùn)動(dòng),當(dāng)兩點(diǎn)相遇時(shí)停止運(yùn)動(dòng),過(guò)點(diǎn)P作AB的垂線,分別交⊙O于點(diǎn)M和點(diǎn)N,已知⊙O的半徑為l,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)若AC=5,則當(dāng)t=時(shí),四邊形AMQN為菱形;當(dāng)t=時(shí),NQ與⊙O相切;
(2)當(dāng)AC的長(zhǎng)為多少時(shí),存在t的值,使四邊形AMQN為正方形?請(qǐng)說(shuō)明理由,并求出此時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角∠O的內(nèi)部有一滑動(dòng)桿AB,當(dāng)端點(diǎn)A沿直線AO向下滑動(dòng)時(shí),端點(diǎn)B會(huì)隨之自動(dòng)地沿直線OB向左滑動(dòng),如果滑動(dòng)桿從圖中AB處滑動(dòng)到A′B′處,那么滑動(dòng)桿的中點(diǎn)C所經(jīng)過(guò)的路徑是( )
A.直線的一部分
B.圓的一部分
C.雙曲線的一部分
D.拋物線的一部分
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)為A(3,0),與y軸的交點(diǎn)為B(0,3),其頂點(diǎn)為C,對(duì)稱軸為x=1.
(1)求拋物線的解析式;
(2)已知點(diǎn)M為y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△ABM為等腰三角形時(shí),求點(diǎn)M的坐標(biāo);
(3)將△AOB沿x軸向右平移m個(gè)單位長(zhǎng)度(0<m<3)得到另一個(gè)三角形,將所得的三角形與△ABC重疊部分的面積記為S,用m的代數(shù)式表示S.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com