【題目】在△ABC中,∠BAC=45°,CD⊥AB,垂足為點(diǎn)D,M為線(xiàn)段DB上一動(dòng)點(diǎn)(不包括端點(diǎn)),點(diǎn)N在直線(xiàn)AC左上方且∠NCM=135°,CN=CM,如圖①.
(1)求證:∠ACN=∠AMC;
(2)記△ANC得面積為5,記△ABC得面積為5.求證:;
(3)延長(zhǎng)線(xiàn)段AB到點(diǎn)P,使BP=BM,如圖②.探究線(xiàn)段AC與線(xiàn)段DB滿(mǎn)足什么數(shù)量關(guān)系時(shí)對(duì)于滿(mǎn)足條件的任意點(diǎn)M,AN=CP始終成立?(寫(xiě)出探究過(guò)程)
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)當(dāng)AC=2BD時(shí),對(duì)于滿(mǎn)足條件的任意點(diǎn)N,AN=CP始終成立,證明見(jiàn)解析.
【解析】
(1)由三角形的內(nèi)角和定理可求∠ACN=∠AMC=135°-∠ACM;
(2)過(guò)點(diǎn)N作NE⊥AC于E,由“AAS”可證△NEC≌△CDM,可得NE=CD,由三角形面積公式可求解;
(3)過(guò)點(diǎn)N作NE⊥AC于E,由“SAS”可證△NEA≌△CDP,可得AN=CP.
(1)∵∠BAC=45°,
∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM.
∵∠NCM=135°,
∴∠ACN=135°﹣∠ACM,∴∠ACN=∠AMC;
(2)過(guò)點(diǎn)N作NE⊥AC于E,
∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN,
∴△NEC≌△CDM(AAS),
∴NE=CD,CE=DM;
∵S1ACNE,S2ABCD,
∴;
(3)當(dāng)AC=2BD時(shí),對(duì)于滿(mǎn)足條件的任意點(diǎn)N,AN=CP始終成立,
理由如下:過(guò)點(diǎn)N作NE⊥AC于E,
由(2)可得NE=CD,CE=DM.
∵AC=2BD,BP=BM,CE=DM,
∴AC﹣CE=BD+BD﹣DM,
∴AE=BD+BP=DP.
∵NE=CD,∠NEA=∠CDP=90°,AE=DP,
∴△NEA≌△CDP(SAS),
∴AN=PC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弧CD⊥AB,垂足為H,P為弧AD上一點(diǎn),連接PA、PB,PB交CD于E.
(1)如圖(1)連接PC、CB,求證:∠BCP=∠PED;
(2)如圖(2)過(guò)點(diǎn)P作⊙O的切線(xiàn)交CD的延長(zhǎng)線(xiàn)于點(diǎn)E,過(guò)點(diǎn)A向PF引垂線(xiàn),垂足為G,求證:∠APG=∠F;
(3)如圖(3)在圖(2)的條件下,連接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直徑AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為正方形ABCD的對(duì)角線(xiàn)AC上一點(diǎn),以O為圓心,OC的長(zhǎng)為半徑的與AB相切于點(diǎn)M.
求證:AD與相切;
若,求圖中陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為,點(diǎn)、分別為邊、上的點(diǎn),,點(diǎn)、分別為、邊上的點(diǎn),連接,若線(xiàn)段與的夾角為,則的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:已知二次函數(shù)的圖象與軸交于和兩點(diǎn).交軸于點(diǎn),點(diǎn),是二次函數(shù)圖象上的一對(duì)對(duì)稱(chēng)點(diǎn),一次函數(shù)的圖象過(guò)點(diǎn),
(1)畫(huà)出圖象,并求二次函數(shù)的解析式.
(2)根據(jù)圖象直接寫(xiě)出使一次函數(shù)值大于或等于二次函數(shù)值的的取值范圍.
(3)若直線(xiàn)與軸交點(diǎn)為,連接,,求三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△POQ中,OP=OQ=4,M是PQ中點(diǎn),把一三角尺的直角頂點(diǎn)放在點(diǎn)M處,以M為旋轉(zhuǎn)中心,旋轉(zhuǎn)三角尺,三角尺的兩直角邊與△POQ的兩直角邊分別交于點(diǎn)A、B.求證:MA=MB;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與x軸交A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),直線(xiàn)與拋物線(xiàn)交于A、C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.
(1)求A、B兩點(diǎn)的坐標(biāo)及直線(xiàn)AC的函數(shù)表達(dá)式;
(2)P是線(xiàn)段AC上的一個(gè)動(dòng)點(diǎn),過(guò)P點(diǎn)作y軸的平行線(xiàn)交拋物線(xiàn)于E點(diǎn),求線(xiàn)段PE長(zhǎng)度的最大值;
(3)點(diǎn)G是拋物線(xiàn)上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿(mǎn)足條件的F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y=ax2+bx+c的頂點(diǎn)為D(–1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(–3,0)和(–2,0)之間,其部分圖象如下圖,則以下結(jié)論:①b2–4ac<0;②a+b+c<0;③c–a=2;④方程ax2+bx+c–2=0有兩個(gè)相等的實(shí)數(shù)根.其中正確結(jié)論的個(gè)數(shù)為( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=﹣3x+3與x軸、y軸分別交于A,B兩點(diǎn),拋物線(xiàn)y=﹣x2+bx+c與直線(xiàn)y=c分別交y軸的正半軸于點(diǎn)C和第一象限的點(diǎn)P,連接PB,得△PCB≌△BOA(O為坐標(biāo)原點(diǎn)).若拋物線(xiàn)與x軸正半軸交點(diǎn)為點(diǎn)F,設(shè)M是點(diǎn)C,F(xiàn)間拋物線(xiàn)上的一點(diǎn)(包括端點(diǎn)),其橫坐標(biāo)為m.
(1)直接寫(xiě)出點(diǎn)P的坐標(biāo)和拋物線(xiàn)的解析式;
(2)當(dāng)m為何值時(shí),△MAB面積S取得最小值和最大值?請(qǐng)說(shuō)明理由;
(3)求滿(mǎn)足∠MPO=∠POA的點(diǎn)M的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com