【題目】(提出問題)如圖1,在等邊三角形ABC內(nèi)一點(diǎn)P,PA=3,PB=4,PC=5.求∠APB的度數(shù)?小明提供了如下思路:
如圖2,將△APC繞A點(diǎn)順時(shí)針旋轉(zhuǎn)60°至△AP'B ,則AP'=AP=3,P'C=PB=4,∠P'AC=∠PAB ,所以∠P'AC+∠CAP=∠PAC+∠BAP ,即∠P'AP=∠BAC=60° ,所以△AP'P為等邊三角形 ,所以∠A P'P=60° ,
……按照小明的解題思路,
易求得∠APB= ;
(嘗試應(yīng)用)
如圖3,在等邊三角形ABC外一點(diǎn)P,PA=6,PB=10,PC=8.求∠APC的度數(shù)?
(解決問題)
如圖4,平面直角坐標(biāo)系xoy中,直線AB的解析式為y=-x+b(b>0),在第一象限內(nèi)一點(diǎn)P,滿足PB:PO:PA=1:2:3,則∠BPO= 度(直接寫出答案)
【答案】【解決問題】 150°;【嘗試應(yīng)用】30°;【解決問題】135°
【解析】
解決問題:由題意得AP'=AP=PP',根據(jù)勾股定理的逆定理,可知△P'PB是直角三角形即可求解.
嘗試應(yīng)用:將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,連接PP',得到△APP'是等邊三角形,△PP'C是直角三角形.
解決問題:將△APO繞O逆時(shí)針旋轉(zhuǎn)90°,連接PP'證明△PP'O為等腰直角三角形,根據(jù)勾股定理證明△PP'B為直角三角形即可.
解決問題:150°.
∵AP'=AP=PP'=3
∴PP'2+BP2= BP'2
∴△BP'P為直角三角形
∴∠APB=150°
嘗試應(yīng)用:∠APC=30°,提示:將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,連接PP',得到△APP'是等邊三角形,△PP'C是直角三角形.
將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,連接PP',PB= P'C=10
∴△APP'是等邊三角形
∴PP'=6
∵PP'2+PC2= P'C2
∴△PP'C是直角三角形
∴∠APC=∠P'PC- ∠P'PA=30°
解決問題:類比前面的方法,通過旋轉(zhuǎn)構(gòu)造直角三角形,可求得結(jié)果為135°
將△APO繞O逆時(shí)針旋轉(zhuǎn)90°,連接PP',
因?yàn)椤?/span>P’OP是等腰直角三角形,
所以PP’==2,
因?yàn)椤?/span>P’OB≌△POA,
所以P’B=PA=3.
在△P’PB中,∵PP’2+PB2=P’B2,
∴△P’PB是直角三角形,
∴∠BPP’=90°,
∴∠BPO=90°+45°=135°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖①點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,連結(jié)AE、AF、EF,將△ABE、△ADF分別沿AE、AF折疊,折疊后的圖形恰好能拼成與△AEF完全重合的三角形.若BE=2,DF=3,求AB的長;
拓展:如圖②點(diǎn)E、F分別在四邊形BACD的邊BC、CD上,且∠B=∠D=90°.連結(jié)AE、AF、EF將△ABE、△ADF分別沿AE、AF折疊,折疊后的圖形恰好能拼成與△AEF完全重合的三角形.若∠EAF=30°,AB=4,則△ECF的周長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,點(diǎn)E,F分別是邊AB,AD上的點(diǎn),連接CE,CF并延長,分別交DA,BA的廷長線于點(diǎn)H,G.
(1)如圖1,若四邊形ABCD是菱形,∠ECF=∠BCD,求證:AC2=AHAG;
(2)如圖2,若四邊形ABCD是正方形,∠ECF=45°,BC=4,設(shè)AE=x,AG=y,求y與x的函數(shù)關(guān)系式;
(3)如圖3,若四邊形ABCD是矩形,AB:AD=1:2,CG=CH,∠GCH=45°,請求tan∠AHG的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,D是邊AC上的一點(diǎn),連接BD,使∠A=2∠1,E是BC上的一點(diǎn),以BE為直徑的⊙O經(jīng)過點(diǎn)D.
(1)求證:AC是⊙O的切線;
(2)若∠A=60°,⊙O的半徑為2,求陰影部分的面積.(結(jié)果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,AB=3cm.點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度向終點(diǎn)B運(yùn)動,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3cm的速度沿BC﹣CD﹣DA向終點(diǎn)A運(yùn)動,到達(dá)各自終點(diǎn)時(shí)停止運(yùn)動.設(shè)動點(diǎn)的運(yùn)動時(shí)間為x秒,△PBQ的面積為ycm2,則能正確表示△PBQ的面積y與時(shí)間x的關(guān)系的圖象是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從淄博汽車站到銀泰城有甲,乙,丙三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從淄博汽車站到銀泰城的用時(shí)情況,在每條線路上隨機(jī)選取了500個班次的公交車,收集了這些班次的公交車用時(shí)(單位:分鐘)的數(shù)據(jù),統(tǒng)計(jì)如下:
線路/公交車用時(shí)的頻數(shù)/公交車用時(shí) | 30≤t≤35 | 35≤t≤40 | 40≤t≤45 | 45≤t≤50 | 合計(jì) |
甲 | 59 | 151 | 166 | 124 | 500 |
乙 | 50 | 50 | 122 | 278 | 500 |
丙 | 45 | 265 | 167 | 23 | 500 |
早高峰期間,乘坐線路上的公交車,從淄博汽車站到銀泰城“用時(shí)不超過45分鐘”的可能性最大.( )
A.甲B.乙C.丙D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,菱形中,,垂足為,,,把四邊形沿所在直線折疊,使點(diǎn)落在上的點(diǎn)處,點(diǎn)落在點(diǎn)處,交于點(diǎn).
(1)證明:;
(2)求四邊形面積;
(3)如圖2,點(diǎn)從點(diǎn)出發(fā),沿路徑以每秒的速度勻速運(yùn)動,設(shè)運(yùn)動時(shí)間為秒,當(dāng)為何值時(shí),的面積與四邊形的面積相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)尺規(guī)作圖:如圖,、是平面上兩個定點(diǎn),在平面上找一點(diǎn),使構(gòu)成等腰直角三角形,且為直角頂點(diǎn).(畫出一個點(diǎn)即可)
(2)在(1)的條件下,若,,則點(diǎn)的坐標(biāo)是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com