【題目】1)尺規(guī)作圖:如圖,、是平面上兩個(gè)定點(diǎn),在平面上找一點(diǎn),使構(gòu)成等腰直角三角形,且為直角頂點(diǎn).(畫出一個(gè)點(diǎn)即可)

2)在(1)的條件下,若,,則點(diǎn)的坐標(biāo)是________.

【答案】1)見(jiàn)解析(2

【解析】

1)如圖作線段AB的垂直平分線MNAB于點(diǎn)O,以O為圓心,OA為半徑作⊙O交直線MNCC′,連接AC,BC,AC′BC′,點(diǎn)CC′即為所求;

2)如圖,由勾股定理求出AB的長(zhǎng),再證明NAE∽△BAO,求出AN,EN的長(zhǎng),再證明NCD∽△NBE,求出CD,OD的長(zhǎng),進(jìn)行可求點(diǎn)C的坐標(biāo),同理可求點(diǎn)的坐標(biāo).

1)如圖作線段AB的垂直平分線MNAB于點(diǎn)O,以O為圓心,OA為半徑作⊙O交直線MNC,C′,連接AC,BCAC′BC′,點(diǎn)CC′即為所求.

2)建立平面直角坐標(biāo)系如圖,CDAN,EGOB,EGOB,垂足分別為DF,G.

A0,2),B4,0),

OA=2,OB=4,

AB=

E是圓心,AB是直徑,

AE=AB=,CE=

AOBAEN中,

∵∠NAE=BAO,∠AEN=AOB,

∴△AOB∽△AEN

NE=,CN=,

AN=

同理可證,NCD∽△NAE,

,

,

CD=1ND=2,

OD=5-2-2=1,

∴點(diǎn)C的坐標(biāo)為(1,-1);

AO=2,

EG=1,

易證EGH∽△NOH,

,即

EH=,

HG=,OH=

,EGOB,

EHG∽△,

,即,

,

GF=1

OF=2+1=3,

∴點(diǎn)的坐標(biāo)為(3,3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(提出問(wèn)題)如圖1,在等邊三角形ABC內(nèi)一點(diǎn)P,PA=3,PB=4,PC=5.求∠APB的度數(shù)?小明提供了如下思路:

如圖2,將APCA點(diǎn)順時(shí)針旋轉(zhuǎn)60°AP'B ,AP'=AP=3,P'C=PB=4,P'AC=PAB ,所以∠P'AC+CAP=PAC+BAP ,即∠P'AP=BAC=60° ,所以AP'P為等邊三角形 ,所以∠A P'P=60° ,

……按照小明的解題思路,

易求得∠APB= ;

(嘗試應(yīng)用)

如圖3,在等邊三角形ABC外一點(diǎn)P,PA=6,PB=10,PC=8.求∠APC的度數(shù)?

(解決問(wèn)題)

如圖4,平面直角坐標(biāo)系xoy中,直線AB的解析式為y=x+b(b>0),在第一象限內(nèi)一點(diǎn)P,滿足PB:PO:PA=1:2:3,則∠BPO= 度(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖所示,在下列五個(gè)結(jié)論中:

2ab0;②abc0;③a+b+c0;④ab+c0;⑤4a+2b+c0,

錯(cuò)誤的個(gè)數(shù)有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2bxcx軸交于點(diǎn)A(-1,O)、C3,0),點(diǎn)B為拋物線頂點(diǎn),直線BD為拋物線的對(duì)稱軸,點(diǎn)Dx軸上,連接AB、BC.

⑴如圖1,若∠ABC60°,則點(diǎn)B的坐標(biāo)為______________;

⑵如圖2,若∠ABC90°,ABy軸交于點(diǎn)E,連接CE.

①求這條拋物線的解析式;

②點(diǎn)P為第一象限拋物線上一個(gè)動(dòng)點(diǎn),設(shè)△PEC的面積為S,點(diǎn)P的橫坐標(biāo)為m,求S關(guān)于m的函數(shù)關(guān)系武,并求出S的最大值;

③如圖3,連接OB,拋物線上是否存在點(diǎn)Q,使直線QC與直線BC所夾銳角等于∠OBD,若存在請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)經(jīng)過(guò)一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍,實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例,得到如下餅圖:則下面結(jié)論中不正確的是(

A.新農(nóng)村建設(shè)后,種植收入減少

B.新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍

C.新農(nóng)村建設(shè)后,其他收入增加了一倍以上

D.新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過(guò)了經(jīng)濟(jì)收入的一半

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD外有一點(diǎn)PPBC外側(cè),并在平行線ABCD之間,若PAPB,PC,則PD=( 。

A.2B.C.3D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1為某立交橋示意圖(道路寬度忽略不計(jì)),AFGJ為高架,以O為圓心的圓盤BCDE位于高架下方,其中AB,AF,CH,DIEJ,GJ為直行道,且ABCHDIEJ,AFGJ,彎道FG是以點(diǎn)O為圓心的圓上的一段。⒔粯虻纳舷赂叨炔詈雎圆挥(jì)),點(diǎn)B,CD,E是圓盤O的四等分點(diǎn).某日凌晨,有甲、乙、丙、丁四車均以10m/s的速度由A口駛?cè)肓⒔粯颍某隹隈偝,若各車到圓心O的距離ym)與從A口進(jìn)入立交后的時(shí)間xs)的對(duì)應(yīng)關(guān)系如圖2所示,則下列說(shuō)法錯(cuò)誤的是(  )

A.甲車在立交橋上共行駛10s

B.I口出立交的車比從H口出立交的車多行駛30m

C.丙、丁兩車均從J口出立交

D.J口出立交的兩輛車在立交橋行駛的路程相差60m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年甲、乙兩家科技公司共向國(guó)家繳納利稅3800萬(wàn)元.2019年隨著團(tuán)家減稅降費(fèi)政策的實(shí)施,兩家公司的利稅將會(huì)減輕,2019年甲公司的利稅比2018年減少15%,乙公司的利稅比2018年減少20%,預(yù)計(jì)2019兩家公司的利稅共為3000萬(wàn)元,求兩家科技公司2018年的利稅各是多少?設(shè)2018年甲公司的利稅為x萬(wàn)元,乙公司的利稅為y方元,根據(jù)題意列出關(guān)于x,y的方程組為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解陽(yáng)光社區(qū)2060歲居民購(gòu)物最喜歡的支付方式,該興趣小組對(duì)社區(qū)內(nèi)該年齡段的部分居民展開了隨機(jī)問(wèn)卷調(diào)查(每人只能選擇其中一項(xiàng)),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:

1)求參與問(wèn)卷調(diào)查的總?cè)藬?shù).

2)補(bǔ)全條形統(tǒng)計(jì)圖.

3)該社區(qū)中2060歲的居民約5000人,估算這些人中最喜歡微信支付方式的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案