【題目】如圖1,已知AB∥CD,那么圖1中∠PAB、∠APC、∠PCD之間有什么數(shù)量關(guān)系?并說(shuō)明理由.
如圖2,已知∠BAC=80°,點(diǎn)D是線段AC上一點(diǎn),CE∥BD,∠ABD和∠ACE的平分線交于點(diǎn)F,請(qǐng)利用(1)的結(jié)論求圖2中∠F的度數(shù).
【答案】(1)∠P=∠PCD﹣∠PAB,理由見解析;(2)∠F=40°
【解析】
(1)先根據(jù)兩直線平行得到∠PCD=∠AHC,再根據(jù)三角形的外角定理,即可得出∠P=∠PCD﹣∠PAB;(2)如圖2中,設(shè)∠ABF=∠FBD=y,∠ACF=∠FCE=x,
由(1)可知:∠F=x﹣y,再根據(jù)∠BDC=∠ABD+∠A,即2x=2y+80°求得x﹣y的度數(shù),即可求出∠F的度數(shù).
(1)結(jié)論:∠P=∠PCD﹣∠PAB.
理由:如圖1中,設(shè)AB交PC于H.
∵AB∥CD,
∴∠PCD=∠AHC,
∵∠AHC=∠PAB+∠P,
∴∠P=∠AHC﹣∠PAB,
∴∠P=∠PCD﹣∠PAB.
(2)如圖2中,設(shè)∠ABF=∠FBD=y,∠ACF=∠FCE=x,
由(1)可知:∠F=x﹣y,
∵BD∥CE,
∴∠BDC=∠DCE=2x,
∵∠BDC=∠ABD+∠A,
∴2x=2y+80°,
∴x﹣y=40°,
∴∠F=40°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D在線段BC上,∠EDB=∠C,BE⊥DE,垂足為E,DE與AB相交于點(diǎn)F.試探究線段BE與DF的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,P是CD邊上一點(diǎn),且AP和BP分別平分∠DAB和∠CBA,若AD=5,AP=8,則△APB的周長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=3,BC=4,P是斜邊AB上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),PQ⊥AB交△ABC的直角邊于點(diǎn)Q,設(shè)AP為x,△APQ的面積為y,則下列圖象中,能表示y關(guān)于x的函數(shù)關(guān)系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AE平分∠BAC,BE⊥AE于點(diǎn)E,點(diǎn)F是BC的中點(diǎn).
(1)如圖1,BE的延長(zhǎng)線與AC邊相交于點(diǎn)D,求證:EF=(AC﹣AB);
(2)如圖2,請(qǐng)直接寫出線段AB、AC、EF之間的數(shù)量關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中
(1)寫出點(diǎn)A,B,C的坐標(biāo).
(2)作出△ABC關(guān)于y軸的對(duì)稱圖形△A1B1C1.
(3)寫出點(diǎn)A1,B1,C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,ABCD 中,∠ABC、∠ADC的平分線分別交AD、BC于點(diǎn)E、F.
(1)求證:四邊形EBFD是平行四邊形;
(2)小明在完成(1)的證明后繼續(xù)進(jìn)行了探索.連接AF、CE,分別交BE、FD于點(diǎn)G、H,得到四邊形EGFH.此時(shí),他猜想四邊形EGFH是平行四邊形,請(qǐng)?jiān)诳驁D(圖2)中補(bǔ)全他的證明思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過原點(diǎn)O的直線與雙曲線y= 交于A、B兩點(diǎn),過點(diǎn)B作BC⊥x軸,垂足為C,連接AC,若S△ABC=5,則k的值是( )
A.
B.
C.5
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,AE是BC邊上的中線,過點(diǎn)C作AE 的垂線CF,垂足為F,過點(diǎn)B作BD⊥BC,交CF的延長(zhǎng)線于點(diǎn)D.
(1)求證:AE=CD.
(2)若AC=12 cm,求BD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com