如圖,EC是⊙O的直徑,且EC=2,作BC⊥AC于C,使BC=2,過(guò)B作⊙O的切線BA交CE的延長(zhǎng)線于A,切點(diǎn)為D.
①求證:AD•AB=AO•AC;
②求AE及AD的長(zhǎng).

【答案】分析:①連接CD,易證得△AOD∽△ABC,然后由相似三角形的對(duì)應(yīng)邊成比例,證得AD•AB=AO•AC;
②首先設(shè)AD=x,AE=y,然后由相似三角形的對(duì)應(yīng)邊成比例,得方程=,=,繼而求得答案.
解答:①證明:連接OD,
∵AB是⊙O的切線,
∴OD⊥AB,
∴∠ADO=90°,
∵BC⊥AC,
∴∠C=90°,
∴∠ADO=∠C,
∵∠A是公共角,
∴△AOD∽△ABC,
∴AD:AC=AO:AB,
∴AD•AB=AO•AC;

②解:設(shè)AD=x,AE=y,
∵EC是⊙O的直徑,且EC=2,BC=2,
∴OE=OD=OC=1,
∵△AOD∽△ABC,
∴AD:AC=AO:AB=OD:BC=1:2,
∵AB與BC是⊙O的切線,
∴BD=BC=2,
==,
解得:x=,y=,
∴AD=,AE=
點(diǎn)評(píng):此題考查了切線的性質(zhì)、相似三角形的判定與性質(zhì)以及切線長(zhǎng)定理.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在單位長(zhǎng)度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過(guò)網(wǎng)格的交點(diǎn)A、B、C.
(1)請(qǐng)完成如下操作:①以點(diǎn)O為原點(diǎn)、豎直和水平方向?yàn)檩S、網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系;
②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,并連接AD、CD.
(2)請(qǐng)?jiān)冢?)的基礎(chǔ)上,完成下列填空:
①寫出點(diǎn)的坐標(biāo):C
 
;D(
 
);
②⊙D的半徑=
 
(結(jié)果保留根號(hào));
③若扇形ADC是一個(gè)圓錐的側(cè)面展開圖,則該圓錐的底面的面積為
 
;(結(jié)果保留π)
④若E(7,0),試判斷直線EC與⊙D的位置關(guān)系,并說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

曙光中學(xué)需制作一副簡(jiǎn)易籃球架,如圖是籃球架的側(cè)面示意圖,已知籃板所在直線AD和直桿EC都與BC垂直,BC=2.8米,CD=1.8米,∠ABD=40°,求斜桿AB與直桿EC的長(zhǎng)分別是多少米?(結(jié)果精確到0.01米)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在單位長(zhǎng)度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過(guò)網(wǎng)格的交點(diǎn)A、B、C.
(1)請(qǐng)完成如下操作:
①以點(diǎn)O為原點(diǎn)、豎直和水平方向所在的直線為坐標(biāo)軸、網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系;②用直尺和圓規(guī)畫出該圓弧所在圓的圓心D的位置(不用寫作法,保留作圖痕跡),并連接AD、CD.
(2)請(qǐng)?jiān)冢?)的基礎(chǔ)上,完成下列問(wèn)題:
①寫出點(diǎn)的坐標(biāo):C
 
、D
 
;
②⊙D的半徑=
 
(結(jié)果保留根號(hào));
③若扇形ADC是一個(gè)圓錐的側(cè)面展開圖,則該圓錐的底面面積為
 
(結(jié)果保留π);
④若E(7,0),試判斷直線EC與⊙D的位置關(guān)系并說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖是合肥市某部分街道公交路線示意圖,BCD是直道,AB=BC=CA,CD=DE=EC,A、B、C、D、E、F、G、H為公共汽車?奎c(diǎn),甲車從A站出發(fā),沿A→H→G→D→E→G→C→F的順序到達(dá)F站,乙車從B站出發(fā)沿B→F→H→E→D→C→G的順序到達(dá)G站,如果甲乙兩車同時(shí)分別從A、B兩站出發(fā),在各站?康臅r(shí)間相同,兩車速度也相同,問(wèn)哪一輛車先到達(dá)指定站?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:初中數(shù)學(xué)解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長(zhǎng)AD交EC的延長(zhǎng)線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

同步練習(xí)冊(cè)答案