如圖,EC是⊙O的直徑,且EC=2,作BC⊥AC于C,使BC=2,過B作⊙O的切線BA交CE的延長線于A,切點為D.
①求證:AD•AB=AO•AC;
②求AE及AD的長.

【答案】分析:①連接CD,易證得△AOD∽△ABC,然后由相似三角形的對應邊成比例,證得AD•AB=AO•AC;
②首先設AD=x,AE=y,然后由相似三角形的對應邊成比例,得方程=,=,繼而求得答案.
解答:①證明:連接OD,
∵AB是⊙O的切線,
∴OD⊥AB,
∴∠ADO=90°,
∵BC⊥AC,
∴∠C=90°,
∴∠ADO=∠C,
∵∠A是公共角,
∴△AOD∽△ABC,
∴AD:AC=AO:AB,
∴AD•AB=AO•AC;

②解:設AD=x,AE=y,
∵EC是⊙O的直徑,且EC=2,BC=2,
∴OE=OD=OC=1,
∵△AOD∽△ABC,
∴AD:AC=AO:AB=OD:BC=1:2,
∵AB與BC是⊙O的切線,
∴BD=BC=2,
==,
解得:x=,y=,
∴AD=,AE=
點評:此題考查了切線的性質、相似三角形的判定與性質以及切線長定理.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結合思想與方程思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點A、B、C.
(1)請完成如下操作:①以點O為原點、豎直和水平方向為軸、網(wǎng)格邊長為單位長,建立平面直角坐標系;
②根據(jù)圖形提供的信息,標出該圓弧所在圓的圓心D,并連接AD、CD.
(2)請在(1)的基礎上,完成下列填空:
①寫出點的坐標:C
 
;D(
 
);
②⊙D的半徑=
 
(結果保留根號);
③若扇形ADC是一個圓錐的側面展開圖,則該圓錐的底面的面積為
 
;(結果保留π)
④若E(7,0),試判斷直線EC與⊙D的位置關系,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

曙光中學需制作一副簡易籃球架,如圖是籃球架的側面示意圖,已知籃板所在直線AD和直桿EC都與BC垂直,BC=2.8米,CD=1.8米,∠ABD=40°,求斜桿AB與直桿EC的長分別是多少米?(結果精確到0.01米)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點A、B、C.
(1)請完成如下操作:
①以點O為原點、豎直和水平方向所在的直線為坐標軸、網(wǎng)格邊長為單位長,建立平面直角坐標系;②用直尺和圓規(guī)畫出該圓弧所在圓的圓心D的位置(不用寫作法,保留作圖痕跡),并連接AD、CD.
(2)請在(1)的基礎上,完成下列問題:
①寫出點的坐標:C
 
、D
 

②⊙D的半徑=
 
(結果保留根號);
③若扇形ADC是一個圓錐的側面展開圖,則該圓錐的底面面積為
 
(結果保留π);
④若E(7,0),試判斷直線EC與⊙D的位置關系并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖是合肥市某部分街道公交路線示意圖,BCD是直道,AB=BC=CA,CD=DE=EC,A、B、C、D、E、F、G、H為公共汽車?奎c,甲車從A站出發(fā),沿A→H→G→D→E→G→C→F的順序到達F站,乙車從B站出發(fā)沿B→F→H→E→D→C→G的順序到達G站,如果甲乙兩車同時分別從A、B兩站出發(fā),在各站?康臅r間相同,兩車速度也相同,問哪一輛車先到達指定站?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:初中數(shù)學解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

同步練習冊答案