【題目】“金山銀山,不如綠水青山”.鄂爾多斯市某旗區(qū)不斷推進“森林城市”建設,今春種植四類樹苗,園林部門從種植的這批樹苗中隨機抽取了4000棵,將各類樹苗的種植棵數(shù)繪制成扇形統(tǒng)計圖,將各類樹苗的成活棵數(shù)繪制成條形統(tǒng)計圖,經(jīng)統(tǒng)計松樹和楊樹的成活率較高,且楊樹的成活率為97%,根據(jù)圖表中的信息解答下列問題:
(1)扇形統(tǒng)計圖中松樹所對的圓心角為 度,并補全條形統(tǒng)計圖.
(2)該旗區(qū)今年共種樹32萬棵,成活了約多少棵?
(3)園林部門決定明年從這四類樹苗中選兩類種植,請用列表法或樹狀圖求恰好選到成活率較高的兩類樹苗的概率.(松樹、楊樹、榆樹、柳樹分別用A,B,C,D表示)
【答案】(1)144°,見解析;(2)300000棵,(3),見解析.
【解析】
(1)根據(jù)題意列式計算,補全條形統(tǒng)計圖即可;
(2)根據(jù)題意列式計算即可求出;
(3)畫樹狀圖得出所有等可能的情況數(shù),找出選到成活率較高的兩類樹苗的情況數(shù),即可求出所求的概率.
解:(1)扇形統(tǒng)計圖中松樹所對的圓心角為360°×(1﹣20%﹣15%﹣25%)=144°,
楊樹的棵數(shù)=4000×25%×97%=970(棵),
補全條形統(tǒng)計圖如圖所示;
(2)320000× ×100%=300000(棵),
答:成活了約300000棵;
(3)
所有等可能的情況有12種,其中恰好選到成活率較高的兩類樹苗有2種,
∴恰好選到成活率較高的兩類樹苗的概率= = .
故答案為:(1)144°,見解析;(2)300000棵,(3),見解析.
科目:初中數(shù)學 來源: 題型:
【題目】為了了解居民的環(huán)保意識,社區(qū)工作人員在光明小區(qū)隨機抽取了若干名居民開展主題為“打贏藍天保衛(wèi)戰(zhàn)”的環(huán)保知識有獎問答活動,并用得到的數(shù)據(jù)繪制了如圖條形統(tǒng)計圖(得分為整數(shù),滿分為10分,最低分為6分)
請根據(jù)圖中信息,解答下列問題:
(1)本次調查一共抽取了 名居民;
(2)求本次調查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)社區(qū)決定對該小區(qū)500名居民開展這項有獎問答活動,得10分者設為“一等獎”,請你根據(jù)調查結果,幫社區(qū)工作人員估計需準備多少份“一等獎”獎品?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是小朋友蕩秋千的側面示意圖,靜止時秋千位于鉛垂線BD上,轉軸B到地面的距離BD=3m.小亮在蕩秋千過程中,當秋千擺動到最高點A時,測得點A到BD的距離AC=2m,點A到地面的距離AE=1.8m;當他從A處擺動到A′處時,有A'B⊥AB.
(1)求A′到BD的距離;
(2)求A′到地面的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由菜鳥網(wǎng)絡打造的一個倉庫有相同數(shù)量的工人和機器人,均為x名(其中x>5),平時每天都只工作8小時,每名機器人每小時加工包裹(分、揀、包裝一體化)的數(shù)量是每名工人每小時加工包裹數(shù)量的2倍.隨著“春節(jié)”臨近,人工短缺,寄年貨的包裹增多,公司決定再增加2名機器人,且將機器人每天工作時間延長至12小時,并對每名機器人進行升級改造,讓現(xiàn)在每名機器人每小時加工包裹的數(shù)量在原有基礎上增加x個,結果現(xiàn)在所有機器人每天加工包裹的數(shù)量是所有工人平時每天加工包裹數(shù)量的6倍,則該倉庫平時一天加工______個包裹.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于長為半徑畫弧,兩弧交于一點P,連接AP并延長交BC于點E,連接EF.
(1)四邊形ABEF是_______;(選填矩形、菱形、正方形、無法確定)(直接填寫結果)
(2)AE,BF相交于點O,若四邊形ABEF的周長為40,BF=10,則AE的長為________,∠ABC=________°.(直接填寫結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,P,B,C是圓上的四個點,∠APC=∠CPB=60°,AP,CB的延長線相交于點D.
(1)求證:△ABC是等邊三角形;
(2)若∠PAC=90°,AB=,求PD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,扇形紙片AOB中,已知∠AOB=90,OA=6,取OA的中點C,過點C作DC⊥OA交于點D,點F是上一點.若將扇形BOD沿OD翻折,點B恰好與點F重合,用剪刀沿著線段BD、DF、FA依次剪下,則剩下的紙片(陰影部分)面積是______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個長方形運動場被分隔成、、、、共個區(qū), 區(qū)是邊長為的正方形, 區(qū)是邊長為的正方形.
(1)列式表示每個區(qū)長方形場地的周長,并將式子化簡;
(2)列式表示整個長方形運動場的周長,并將式子化簡;
(3)如果, ,求整個長方形運動場的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=ax+b過一,二,四象限,且過(6,0),則關于二次函數(shù)y=ax2+bx+1的以下說法:①圖象與x軸有兩個交點;②a<0,b>0;③當x=3時函數(shù)有最小值;④若存在一個實數(shù)m,當x≤m時,y隨x的增大而增大,則m≤3.其中正確的是( )
A. ①②B. ①②③C. ①②④D. ②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com