【題目】如圖是小朋友蕩秋千的側(cè)面示意圖,靜止時秋千位于鉛垂線BD上,轉(zhuǎn)軸B到地面的距離BD=3m.小亮在蕩秋千過程中,當秋千擺動到最高點A時,測得點A到BD的距離AC=2m,點A到地面的距離AE=1.8m;當他從A處擺動到A′處時,有A'B⊥AB.
(1)求A′到BD的距離;
(2)求A′到地面的距離.
【答案】(1)A'到BD的距離是1.2m;(2)A'到地面的距離是1m.
【解析】
(1)如圖2,作A'F⊥BD,垂足為F.根據(jù)同角的余角相等證得∠2=∠3;再利用AAS證明△ACB≌△BFA',根據(jù)全等三角形的性質(zhì)即可得A'F=BC,根據(jù)BC=BD﹣CD求得BC的長,即可得A'F的長,從而求得A'到BD的距離;(2)作A'H⊥DE,垂足為H,可證得A'H=FD,根據(jù)A'H=BD﹣BF求得A'H的長,從而求得A'到地面的距離.
(1)如圖2,作A'F⊥BD,垂足為F.
∵AC⊥BD,
∴∠ACB=∠A'FB=90°;
在Rt△A'FB中,∠1+∠3=90°;
又∵A'B⊥AB,∴∠1+∠2=90°,
∴∠2=∠3;
在△ACB和△BFA'中,
,
∴△ACB≌△BFA'(AAS);
∴A'F=BC,
∵AC∥DE且CD⊥AC,AE⊥DE,
∴CD=AE=1.8;
∴BC=BD﹣CD=3﹣1.8=1.2,
∴A'F=1.2,即A'到BD的距離是1.2m.
(2)由(1)知:△ACB≌△BFA',
∴BF=AC=2m,
作A'H⊥DE,垂足為H.
∵A'F∥DE,
∴A'H=FD,
∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距離是1m.
科目:初中數(shù)學 來源: 題型:
【題目】已知:∠AOB.
求作:∠A'O'B',使∠A'O′B'=∠AOB
(1)如圖1,以點O為圓心,任意長為半徑畫弧,分別交OA,OB于點C、D;
(2)如圖2,畫一條射線O′A′,以點O′為圓心,OC長為半徑間弧,交O′A′于點C′;
(3)以點C′為圓心,CD長為半徑畫弧,與第2步中所而的弧交于點D′;
(4)過點D′畫射線O′B',則∠A'O'B'=∠AOB.
根據(jù)以上作圖步驟,請你證明∠A'O'B′=∠AOB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過A(0,3),B(﹣4,﹣)兩點.
(1)求b,c的值.
(2)二次函數(shù)y=﹣x2+bx+c的圖象與x軸是否有公共點,求公共點的坐標;若沒有,請說明情況.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點D、F、E、G都在△ABC的邊上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).(請在下面的空格處填寫理由或數(shù)學式)
解:∵EF∥AD,(已知)
∴∠2= ( )
∵∠1=∠2,(已知)
∴∠1= ( )
∴ ∥ ,( )
∴∠AGD+ =180°,(兩直線平行,同旁內(nèi)角互補)
∵ ,(已知)
∴∠AGD= (等式性質(zhì))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】星期天小紅從家跑步去體育場,在那里鍛煉了后又步行到文具店買筆,然后散步回到家。小明離家的距離與所用時間之間的圖象如圖所示.請你根據(jù)圖象解答下列問題:
(1)體育場距文具店___________;___________;小明在文具店停留___________.
(2)請你直接寫出線段和線段的解析式.
(3)當為何值時,小明距家?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,
(1)如圖①,BD、CD是∠ABC和∠ACB的角平分線且相交于點D,若∠A =70°,試求∠BDC的度數(shù),并說明理由。
(2)如圖②,BD、CD分別是△ABC外角∠EBC、∠FCB的平分線且相交于點D,若∠A =x°,試用x表示∠BDC的度數(shù),并說明理由。
(3)如圖③,BD、CD分別是∠ABC和△ACB外角∠ACE的平分線且相交于點D,試找出∠A與∠BDC之間的數(shù)量關系,并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD是高,AE、BF是角平分線,它們相交于點O,∠CAB=500,∠C=600,求∠DAE和∠BOA的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,AB的垂直平分線MN交AC于點D,交AB于E.
(1)求∠DBC的度數(shù).
(2)猜想△BCD的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中, AB=AC,點D為BC中點,點E在AB邊上,連接DE,過點D作DE的垂線,交AC于點F.下列結(jié)論:①△BDE≌△ADF;②AE=CF;③BE+CF=EF;④S四邊形AEDF=AD2,其中正確的結(jié)論是__________(填序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com