【題目】如圖,在ΔABC中,∠C=90°,點(diǎn)DBC上,BD=4,AD=BC,cosADC=

1)求DC的長(zhǎng);

2)求sinB的值.

【答案】1CD=6;(1sinB= .

【解析】

1)根據(jù)cosADC,就是已知CDAD=35,因而可以設(shè)CD=3x,AD=5x,AC=4x.根據(jù)BD=4,就可以得到關(guān)于x的方程,就可以求出x,求出CD的長(zhǎng)度;

2)在RtABC中,先利用勾股定理求出AB,再根據(jù)正弦函數(shù)的定義即可求出sinB的值.

解:(1)在直角ACD中,cosADC=,
因而可以設(shè)CD=3xAD=5x,
根據(jù)勾股定理得到AC=4x,則BC=AD=5x,
BD=4,∴5x-3x=4,
解得x=2,
因而BC=10,AC=8,
CD=6;
2)在直角ABC中,根據(jù)勾股定理得到AB=2,
sinB=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BAD=90°,點(diǎn)EBC的延長(zhǎng)線上,且∠DEC=BAC.

(1)求證:DE是⊙O的切線;

(2)若ACDE,當(dāng)AB=8,CE=2時(shí),求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明在家鄉(xiāng)的樓頂上處測(cè)得池塘的一端處的俯角為,測(cè)得池塘處的俯角,、、三點(diǎn)在同一水平直線上.已知樓高米,求池塘寬為多少米?(參考數(shù)據(jù):,, ,,, ,.結(jié)果保留一位小數(shù).)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù))的圖象交于,兩點(diǎn).

1)求的值;

2)求出一次函數(shù)與反比例函數(shù)的表達(dá)式;

3)過(guò)點(diǎn)軸的垂線,與直線和函數(shù))的圖象的交點(diǎn)分別為點(diǎn),,當(dāng)點(diǎn)在點(diǎn)下方時(shí),寫(xiě)出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)).

1)求出二次函數(shù)圖象的對(duì)稱軸;

2)若該二次函數(shù)的圖象經(jīng)過(guò)點(diǎn),且整數(shù),滿足,求二次函數(shù)的表達(dá)式;

3)對(duì)于該二次函數(shù)圖象上的兩點(diǎn),,設(shè),當(dāng)時(shí),均有,請(qǐng)結(jié)合圖象,直接寫(xiě)出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們做如下的規(guī)定:如果一個(gè)三角形在運(yùn)動(dòng)變化時(shí)保持形狀和大小不變,則把這樣的三角形稱為三角形板.

把兩塊邊長(zhǎng)為4的等邊三角形板疊放在一起,使三角形板的頂點(diǎn)與三角形板AC邊中點(diǎn)重合,把三角形板固定不動(dòng),讓三角形板繞點(diǎn)旋轉(zhuǎn),設(shè)射線與射線相交于點(diǎn)M,射線與線段相交于點(diǎn)N

1)如圖1,當(dāng)射線經(jīng)過(guò)點(diǎn),即點(diǎn)N與點(diǎn)重合時(shí),易證ADM∽△CND.此時(shí),AM·CN=      

2)將三角形板由圖1所示的位置繞點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn),設(shè)旋轉(zhuǎn)角為.其中,問(wèn)AM·CN的值是否改變?說(shuō)明你的理由.

3)在(2)的條件下,設(shè)AM= x,兩塊三角形板重疊面積為,求的函數(shù)關(guān)系式.(圖2,圖3供解題用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖像與軸交于兩點(diǎn),與軸交于點(diǎn),直線l是拋物線的對(duì)稱軸,是拋物線的頂點(diǎn).

(1)求拋物線的解析式及頂點(diǎn)的坐標(biāo);

(2)如圖,連接,線段上的點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)恰好在線段上,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是無(wú)障礙通道,圖2是其截面示意圖,已知坡角∠BAC=30°,斜坡AB=4m,∠ACB=90°.現(xiàn)要對(duì)坡面進(jìn)行改造,使改造后的坡角∠BDC=26.5°,需要把水平寬度AC增加多少m(結(jié)果精確到0.1)?(參考數(shù)據(jù):≈1.73,sin26.5°≈0.45,cos26.5°≈0.90,tan26.5°≈0.50

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線軸于點(diǎn),,交軸的負(fù)半軸于,頂點(diǎn)為.下列結(jié)論:①;②;③當(dāng)時(shí),;④當(dāng)是等腰直角三角形時(shí),則;⑤若是一元二次方程的兩個(gè)根,且,則.其中錯(cuò)誤的有( )個(gè).

A.5B.4C.3D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案