【題目】如圖,在平行四邊形紙片中,,將紙片沿對角線對折,邊與邊交于點,此時恰為等邊三角形,則重疊部分的面積為_________

【答案】

【解析】

首先根據(jù)等邊三角形的性質(zhì)可得A B'=AE=E B',∠B'=B'EA=60°,根據(jù)折疊的性質(zhì),∠BCA=B'CA,,再證明∠B'AC=90°,再證得SAEC=SAEB',再求SA B'C進而可得答案.

解:∵為等邊三角形,

A B'=AE=E B',∠B'=B'EA=60°,
根據(jù)折疊的性質(zhì),∠BCA=B'CA,
∵四邊形ABCD是平行四邊形,
AD//BC,AD=BCAB=CD,
∴∠B'EA=B'CB,∠EAC=BCA,
∴∠ECA=BCA=30°,

∴∠EAC=30°
∴∠B'AC=90°,
,
B'C=8,

AC==,
B'E=AE=EC,

SAEC=SAEB'= SA B'C= × ×4×=,

故答案為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)后得到正方形AB′C′D′,邊B′C′DC交于點O,則四邊形AB′OD的面積是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】201311日新交通法規(guī)開始實施.為了解某社區(qū)居民遵守交通法規(guī)情況,小明隨機選取部分居民就行人闖紅燈現(xiàn)象進行問卷調(diào)查,調(diào)查分為“A:從不闖紅燈;B:偶爾闖紅燈;C:經(jīng)常闖紅燈;D:其他四種情況,并根據(jù)調(diào)查結(jié)果繪制出部分條形統(tǒng)計圖(如圖1)和部分扇形統(tǒng)計圖(如圖2).請根據(jù)圖中信息,解答下列問題:

1)本次調(diào)查共選取   名居民;

2)求出扇形統(tǒng)計圖中“C”所對扇形的圓心角的度數(shù),并將條形統(tǒng)計圖補充完整;

3)如果該社區(qū)共有居民1600人,估計有多少人從不闖紅燈?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,弦CD⊥AB,垂足為點ECF⊥AF,且CF=CE

1)求證:CF⊙O的切線;

2)若sin∠BAC=,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 ABCD中,CD=2AD,BEAD于點E,F(xiàn)DC的中點,連結(jié)EF、BF,下列結(jié)論:①∠ABC=2ABF;EF=BF;S四邊形DEBC=2SEFB;④∠CFE=3DEF,其中正確結(jié)論的個數(shù)共有( ).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】幾何學(xué)的產(chǎn)生,源于人們對土地面積測量的需要,以面積早就成為人們認識圖形性質(zhì)與幾何證明的有效工具,可以說幾何學(xué)從一開始便與面積結(jié)下了不解之緣.我們已經(jīng)掌握了平行四邊形面積的求法,但是一般四邊形的面積往往不易求得,那么我們能否將其轉(zhuǎn)化為平行四邊形來求呢?

1)方法1:如圖①,連接四邊形的對角線,分別過四邊形的四個頂點作對角線的平行線,所作四條線相交形成四邊形,易證四邊形是平行四邊形.請直接寫出S四邊形ABCD之間的關(guān)系:_______________

方法2:如圖②,取四邊形四邊的中點,,,,連接,,

2)求證:四邊形是平行四邊形;

3)請直接寫出S四邊形ABCD之間的關(guān)系:_____________

方法3:如圖③,取四邊形四邊的中點,,,連接,交于點.先將四邊形繞點旋轉(zhuǎn)得到四邊形,易得點,在同一直線上;再將四邊形繞點旋轉(zhuǎn)得到四邊形,易得點,在同一直線上;最后將四邊形沿方向平移,使點與點重合,得到四邊形;

4)由旋轉(zhuǎn)、平移可得_________,_________,所以,所以點,在同一直線上,同理,點,也在同一點線上,所以我們拼接成的圖形是一個四邊形.

5)求證:四邊形是平行四邊形.

(注意:請考生在下面2題中任選一題作答如果多做,則按所做的第一題計分)

6)應(yīng)用1:如圖④,在四邊形中,對角線交于點,,則S四邊形ABCD=

7)應(yīng)用2:如圖⑤,在四邊形中,點,,,分別是,的中點,連接交于點,,,則S四邊形ABCD=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小李在學(xué)校“青少年科技創(chuàng)新比賽”活動中,設(shè)計了一個沿直線軌道做勻速直線運動的模型.甲車從處出發(fā)向處行駛,同時乙車從處出發(fā)向處行駛.如圖所示,線段分別表示甲車、乙車離處的距離(米)與已用時間(分)之間的關(guān)系.試根據(jù)圖象,解決以下問題:

1)填空:出發(fā)_________(分)后,甲車與乙車相遇,此時兩車距離________(米);

2)求乙車行駛(分)時與處的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB 為⊙O 的直徑,點 C 為⊙O 上一點,AD 和過點 C 的切線相互垂直,垂足為 D

(1)求證:AC 平分∠DAB;

(2)AD 交⊙O 于點 E,若 AD=3CD=9,求 AE 的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果m是從0,1,2,3四個數(shù)中任取的一個數(shù),n是從0,1,2三個數(shù)中任取的一個數(shù),那么關(guān)于x的一元二次方程x2-2mx+n2=0有實數(shù)根的概率為______

查看答案和解析>>

同步練習(xí)冊答案