【題目】為了盡快實(shí)施“脫貧致富奔小康”宏偉意圖,某縣扶貧工作隊(duì)為朝陽溝村購(gòu)買了一批蘋果樹苗和梨樹苗,已知一棵蘋果樹苗比一棵梨樹苗貴2元,購(gòu)買蘋果樹苗的費(fèi)用和購(gòu)買梨樹苗的費(fèi)用分別是3500元和2500元.
(1)若兩種樹苗購(gòu)買的棵數(shù)一樣多,求梨樹苗的單價(jià);
(2)若兩種樹苗共購(gòu)買1100棵,且購(gòu)買兩種樹苗的總費(fèi)用不超過6000元,根據(jù)(1)中兩種樹苗的單價(jià),求梨樹苗至少購(gòu)買多少棵.

【答案】
(1)解:設(shè)梨樹苗的單價(jià)為x元,則蘋果樹苗的單價(jià)為(x+2)元,

依題意得: = ,

解得x=5.

經(jīng)檢驗(yàn)x=5是原方程的解,且符合題意.

答:梨樹苗的單價(jià)是5元


(2)解:設(shè)購(gòu)買梨樹苗種樹苗a棵,蘋果樹苗則購(gòu)買(1100﹣a)棵,

依題意得:(5+2)(1100﹣a)+5a≤6000,

解得a≥850.

答:梨樹苗至少購(gòu)買850棵


【解析】(1)設(shè)梨樹苗的單價(jià)為x元,則蘋果樹苗的單價(jià)為(x+2)元,根據(jù)兩種樹苗購(gòu)買的棵樹一樣多列出方程求出其解即可;(2)設(shè)購(gòu)買梨樹苗種樹苗a棵,蘋果樹苗則購(gòu)買(1100﹣a)棵,根據(jù)購(gòu)買兩種樹苗的總費(fèi)用不超過6000元建立不等式求出其解即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解分式方程的應(yīng)用的相關(guān)知識(shí),掌握列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗(yàn)根、寫出答案(要有單位).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式2x﹣3< ,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(a,3),B(b,1)都在雙曲線y= 上,點(diǎn)C,D,分別是x軸,y軸上的動(dòng)點(diǎn),則四邊形ABCD周長(zhǎng)的最小值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017通遼)小蘭和小穎用下面兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤做游戲,每個(gè)轉(zhuǎn)盤被分成面積相等的幾個(gè)扇形,轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤各一次,若兩次指針?biāo)笖?shù)字之和小于4,則小蘭勝,否則小穎勝(指針指在分界線時(shí)重轉(zhuǎn)),這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)用樹狀圖或列表法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 )÷ ,其中a=2017°+(﹣ 1+ tan30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把等邊△A BC沿著D E折疊,使點(diǎn)A恰好落在BC邊上的點(diǎn)P處,且DP⊥BC,若BP=4cm,則EC=cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:三角形任意兩邊的“極化值”等于第三邊上的中線和這邊一半的平方差.如圖1,在△ABC中,AO是BC邊上的中線,AB與AC的“極化值”就等于AO2﹣BO2的值,可記為AB△AC=AO2﹣BO2
(1)在圖1中,若∠BAC=90°,AB=8,AC=6,AO是BC邊上的中線,則AB△AC= , OC△OA=;

(2)如圖2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;

(3)如圖3,在△ABC中,AB=AC,AO是BC邊上的中線,點(diǎn)N在AO上,且ON= AO.已知AB△AC=14,BN△BA=10,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在水域上建一個(gè)演藝廣場(chǎng),演藝廣場(chǎng)由看臺(tái)Ⅰ,看臺(tái)Ⅱ,三角形水域ABC,及矩形表演臺(tái)BCDE四個(gè)部分構(gòu)成(如圖),看臺(tái)Ⅰ,看臺(tái)Ⅱ是分別以AB,AC為直徑的兩個(gè)半圓形區(qū)域,且看臺(tái)Ⅰ的面積是看臺(tái)Ⅱ的面積的3倍,矩形表演臺(tái)BCDE 中,CD=10米,三角形水域ABC的面積為 平方米,設(shè)∠BAC=θ.
(1)求BC的長(zhǎng)(用含θ的式子表示);
(2)若表演臺(tái)每平方米的造價(jià)為0.3萬元,求表演臺(tái)的最低造價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過點(diǎn)B、D.
(1)求二次函數(shù)的解析式.
(2)請(qǐng)直接寫出D點(diǎn)的坐標(biāo).
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案