【題目】如圖,雙曲線經過矩形OABC的邊BC的中點E,交AB于點D.設點B的坐標為(m,n).
(1)直接寫出點E的坐標,并求出點D的坐標;(用含m,n的代數(shù)式表示)
(2)若梯形ODBC的面積為,求雙曲線的函數(shù)解析式.
科目:初中數(shù)學 來源: 題型:
【題目】為了解某市市民“綠色出行”方式的情況,某校數(shù)學興趣小組以問卷調查的形式,隨機調查了某市部分出行市民的主要出行方式(參與問卷調查的市民都只從以下五個種類中選擇一類),并將調查結果繪制成如下不完整的統(tǒng)計圖.
種類 | A | B | C | D | E |
出行方式 | 共享單車 | 步行 | 公交車 | 的士 | 私家車 |
根據(jù)以上信息,回答下列問題:
(1)參與本次問卷調查的市民共有 人,其中選擇B類的人數(shù)有 人;
(2)在扇形統(tǒng)計圖中,求A類對應扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖;
(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請估計該市“綠色出行”方式的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線y=x2+x-2與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,直線l經過A,C兩點,連接BC.
(1)求直線l的解析式;
(2)若直線x=m(m<0)與該拋物線在第三象限內交于點E,與直線l交于點D,連接OD.當OD⊥AC時,求線段DE的長;
(3)取點G(0,-1),連接AG,在第一象限內的拋物線上,是否存在點P,使∠BAP=∠BCO-∠BAG?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明為了測量小河對岸大樹BC的高度,他在點A測得大樹頂端B的仰角是45°,沿斜坡走米到達斜坡上點D,在此處測得樹頂端點B的仰角為30°,且斜坡AF的坡比為1︰2.則小明從點A走到點D的過程中,他上升的高度為____米;大樹BC的高度為____米(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,我們把一個半圓和拋物線的一部分圍成的封閉圖形稱為“果圓”,已知分別為“果圓”與坐標軸的交點,直線與“果圓”中的拋物線交于兩點
(1)求“果圓”中拋物線的解析式,并直接寫出“果圓”被軸截得的線段的長;
(2)如圖,為直線下方“果圓”上一點,連接,設與交于,的面積記為,的面積即為,求的最小值
(3)“果圓”上是否存在點,使,如果存在,直接寫出點坐標,如果不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC沿BC邊上的中線AD平移到△A'B'C'的位置,已知△ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( 。
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,反比例函數(shù)的圖像與邊長是6的正方形的兩邊,分別相交于,兩點.
(1)若點是邊的中點,求反比例函數(shù)的解析式和點的坐標;
(2)若,求直線的解析式及的面積
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角角坐標系中,已知拋物線與軸交于,兩點.
(1)求拋物線的函數(shù)表達式;
(2)如圖,軸與拋物線相交于點,點是直線下方拋物線上的動點,過點且與軸平行的直線與,分別交于點試探究當點運動到何處時,線段的最長,求點的坐標;
(3)若點為拋物線的頂點,點是該拋物線上的一點,在軸、軸上分別找點,使四邊形的周長最小,請求出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=kx+2與x軸、y軸分別交于點A(-1,0)和點B,與反比例函數(shù)y=的圖象在第一象限內交于點C(1,n).
(1)求k的值;
(2)求反比例函數(shù)的解析式;
(3)過x軸上的點D(a,0)作平行于y軸的直線l(a>1),分別與直線AB和雙曲線y=交于點P、Q,且PQ=2QD,求點D的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com