【題目】如圖,在RtABC中,∠B45°,ABAC,點(diǎn)DBC的中點(diǎn),直角∠MDN繞點(diǎn)D旋轉(zhuǎn),DM,DN分別與邊AB,AC交于EF兩點(diǎn),下列結(jié)論:①△DEF是等腰直角三角形;②AECF;③△BDE≌△ADF;④BECFEF,其中正確結(jié)論是(

A.①②③B.②③④C.①②④D.①②③④

【答案】A

【解析】

根據(jù)等腰直角三角形的性質(zhì)可得∠CAD=B=45°,根據(jù)同角的余角相等求出∠ADF=BDE,然后利用“角邊角”證明△BDE和△ADF全等,判斷出③正確;根據(jù)全等三角形對應(yīng)邊相等可得DE=DFBE=AF,從而得到△DEF是等腰直角三角形,判斷出①正確;再求出AE=CF,判斷出②正確;根據(jù)BE+CF=AF+AE,利用三角形的任意兩邊之和大于第三邊可得BE+CFEF,判斷出④錯誤.

解:∵∠B=45°,AB=AC
∴△ABC是等腰直角三角形,
∵點(diǎn)DBC中點(diǎn),
AD=CD=BD,ADBC,∠CAD=45°,
∴∠CAD=B,
∵∠MDN是直角,
∴∠ADF+ADE=90°,
∵∠BDE+ADE=ADB=90°,
∴∠ADF=BDE,
在△BDE和△ADF中,

∴△BDE≌△ADFASA),
故③正確;
DE=DFBE=AF,
∴△DEF是等腰直角三角形,
故①正確;
AE=AB-BE,CF=AC-AF,
AE=CF,
故②正確;
BE+CF=AF+AE
BE+CFEF
故④錯誤;
綜上所述,正確的結(jié)論有①②③;
故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,點(diǎn)E是邊AB上的動點(diǎn),點(diǎn)F是射線CD上一點(diǎn),射線ED和射線AF交于點(diǎn)G,且∠AGE=∠DAB.

(1)求線段CD的長;

(2)如果△AEG是以EG為腰的等腰三角形,求線段AE的長;

(3)如果點(diǎn)F在邊CD上(不與點(diǎn)C、D重合),設(shè)AE=x,DF=y,求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在坐標(biāo)平面內(nèi),點(diǎn)O是坐標(biāo)原點(diǎn),A0,6),B2,0),且∠OBA=60°,將△OAB沿直線AB翻折,得到△CAB,點(diǎn)O與點(diǎn)C對應(yīng).

1)求點(diǎn)C的坐標(biāo):

2)動點(diǎn)P從點(diǎn)O出發(fā),以2個單位長度/秒的速度沿線段OA向終點(diǎn)A運(yùn)動,設(shè)△POB的面積為SS≠0),點(diǎn)P的運(yùn)動時間為t秒,求St的關(guān)系式,并直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩地相距80km,甲、乙兩人騎車同時分別從AB兩地相向而行,假設(shè)他們都保持勻速行駛,則他們各自到A地的距離s(km)都是騎車時間t(h)的一次函數(shù),如圖所示.

1)求乙的st之間的解析式;

2)經(jīng)過多長時間甲乙兩人相距10km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列游戲?qū)﹄p方公平的是(

A. 隨意轉(zhuǎn)動被等分成個扇形,且分別均勻涂有紅、黃、綠三種顏色的轉(zhuǎn)盤,若指針指向綠色區(qū)域,則小明勝,否則小亮勝

B. 從一個裝有個紅球,個黃球和個黑球(這些球除顏色外完全相同)的袋中任意摸出一個球,若是紅球,則小明勝,否則小亮勝

C. 投擲一枚均勻的正方體形狀的骰子,若偶數(shù)點(diǎn)朝上,則小明勝,若是奇數(shù)點(diǎn)朝上,則小亮勝

D. 從分別標(biāo)有數(shù),,的五張紙條中,任意抽取一張,若抽到的紙條所標(biāo)的數(shù)字為偶數(shù),則小明勝,若抽到的紙條所標(biāo)的數(shù)字為奇數(shù),則小亮勝

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,AC上的中線BD把三角形的周長分為24㎝和30㎝的兩個部分,求三角形的三邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠BAC70°,∠ABC的平分線與∠ACB的外角平分線交于點(diǎn)O,則∠BOC_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角尺(在RtABC中,∠ACB=90°,B=60°;在RtDEF中,∠EDF=90°,E=45°)如圖1擺放,點(diǎn)DAB邊的中點(diǎn),DEAC于點(diǎn)P,DF經(jīng)過點(diǎn)C,且BC=2.

(1)求證:ADCAPD;

(2)APD的面積;

(3)如圖2,將DEF繞點(diǎn)D順時針方向旋轉(zhuǎn)角α(0°<α<60°),此時的等腰直角三角尺記為DE′F′,DE′AC于點(diǎn)M,DF′BC于點(diǎn)N,試判斷的值是否隨著α的變化而變化?如果不變,請求出的值;反之,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩塊等腰直角三角板△ABC△DEC如圖擺放,其中∠ACB=∠DCE=90°,F(xiàn)DE的中點(diǎn),HAE的中點(diǎn),GBD的中點(diǎn).

(1)如圖1,若點(diǎn)D、E分別在AC、BC的延長線上,通過觀察和測量,猜想FHFG的數(shù)量關(guān)系為______和位置關(guān)系為______;

(2)如圖2,若將三角板△DEC繞著點(diǎn)C順時針旋轉(zhuǎn)至ACE在一條直線上時,其余條件均不變,則(1)中的猜想是否還成立,若成立,請證明,不成立請說明理由;

(3)如圖3,將圖1中的△DEC繞點(diǎn)C順時針旋轉(zhuǎn)一個銳角,得到圖3,(1)中的猜想還成立嗎?直接寫出結(jié)論,不用證明.

查看答案和解析>>

同步練習(xí)冊答案