【題目】農華公司以10千克的價格收購一批農產品進行銷售,為了得到日銷售量千克與銷售價格千克之間的關系,經過市場調查獲得部分數(shù)據(jù)如表:

銷售價格千克

10

15

20

25

30

日銷售量千克

300

225

150

75

0

請你根據(jù)表中的數(shù)據(jù),用所學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識確定px之間的函數(shù)表達式;

農華公司應該如何確定這批農產品的銷售價格,才能使日銷售利潤W元最大?

若農華公司每銷售1千克這種農產品需支出a的相關費用,當時,農經公司的日獲利Q元的最大值為1215元,求a的值日獲利日銷售利潤日支出費用

【答案】(1) p=-15x+450;

(2)這批農產品的銷售價格為20元/千克時,才能使日銷售利潤W元最大,確定方法見解析; (3)2.

【解析】

首先根據(jù)表中的數(shù)據(jù),可猜想yx是一次函數(shù)關系,任選兩點求表達式,再驗證猜想的正確性;

根據(jù)題意列出日銷售利潤w與銷售價格x之間的函數(shù)關系式,根據(jù)二次函數(shù)的性質確定最大值即可;

根據(jù)題意列出日銷售利潤Q與銷售價格x之間的函數(shù)關系式,并求得拋物線的對稱軸,再分兩種情況進行討論,依據(jù)二次函數(shù)的性質求得a的值.

解:假設px成一次函數(shù)關系,設函數(shù)關系式為,

解得:,,

,

檢驗:當,;當;當,,符合一次函數(shù)解析式;

設日銷售利潤

,

時,w有最大值1500元,

故這批農產品的銷售價格定為20元,才能使日銷售利潤最大;

日獲利,

對稱軸為,

,則當時,Q有最大值,

不合題意;

,則當時,Q有最大值,

代入,可得,

時,,

解得,舍去,

綜上所述,a的值為2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了安全,請勿超速.如圖,一條公路建成通車,在某直線路段MN限速60千米/小時,為了檢測車輛是否超速,在公路MN旁設立了觀測點C,從觀測點C測得一小車從點A到達點B行駛了5秒鐘,已知∠CAN=45°,CBN=60°,BC=200米,此車超速了嗎?請說明理由.

(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,AB=AC,BAC=90°,OBC的中點。

(1)寫出點OABC的三個頂點A、B、C的距離的大小關系并說明理由;

(2)如果點M、N分別在線段AB、AC上移動,在移動中保持AN=BM,請判斷OMN的形狀,并證明你的結論。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx2a≠0)與x軸交于A、B兩點,與y軸交于C點,直線BD交拋物線于點D,并且D2,3),tanDBA=

1)求拋物線的解析式;

2)已知點M為拋物線上一動點,且在第三象限,順次連接點B、MC、A,求四邊形BMCA面積的最大值;

3)在(2)中四邊形BMCA面積最大的條件下,過點M作直線平行于y軸,在這條直線上是否存在一個以Q點為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E在對角線BD上,EFABAD于點F,連接BF

1)如圖1,若AB4,DE,求BF的長;

2)如圖2.連接AE,交BF于點H,若DFHF2,求線段AB的長;

3)如圖3,連接BF,AB3,設EFx,BEF的面積為S,請用x的表達式表示S,并求出S的最大值;當S取得最大值時,連接CE,線段DB繞點D順時針旋轉30°得到線段DJDJCE交于點K,連接CJ,求證:CJCE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一節(jié)數(shù)學實踐活動課上,老師拿出三個邊長都為5cm 的正方形硬紙板,他向同學們提出了這樣一個問題:若將三個正方形紙板不重疊地放在桌面上,用一個圓形硬紙板將其蓋住,這樣的圓形硬紙板的最小直徑應有多大?問題提出后,同學們經過討論,大家覺得本題實際上就是求將三個正方形硬紙板無重疊地適當放置,圓形硬紙板能蓋住時的最小直徑.老師將同學們討論過程中探索出的三種不同擺放類型的圖形畫在黑板上,如圖所示:

(1)通過計算(結果保留根號與π).

(Ⅰ)圖①能蓋住三個正方形所需的圓形硬紙板最小直徑應為

(Ⅱ)圖②能蓋住三個正方形所需的圓形硬紙板最小直徑為

(Ⅲ)圖③能蓋住三個正方形所需的圓形硬紙板最小直徑為

(2)其實上面三種放置方法所需的圓形硬紙板的直徑都不是最小的,請你畫出用圓形硬紙板蓋住三個正方形時直徑最小的放置方法,(只要畫出示意圖,不要求說明理由),并求出此時圓形硬紙板的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來霧霾天氣給人們的生活帶來很大影響,空氣質量問題倍受人們關注.某單位計劃在室內安裝空氣凈化裝置,需購進A、B兩種設備.每臺B種設備價格比每臺A種設備價格多0.7萬元,花3萬元購買A種設備和花7.2萬元購買B種設備的數(shù)量相同.

(1)A種、B種設備每臺各多少萬元?

(2)根據(jù)單位實際情況,需購進A、B兩種設備共20臺,總費用不高于15萬元,求A種設備至少要購買多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點A逆時針旋轉60°,點O,B的對應點分別為O′,B′,連接BB′,則圖中陰影部分的面積是( )

A. B. 2 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某路燈在鉛垂面內的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為18米,從DE兩處測得路燈B的仰角分別為αβ,且tanα=6,tanβ=,求燈桿AB的長度.

查看答案和解析>>

同步練習冊答案