【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx+c的圖象如圖所示.

(1)求二次函數(shù)的表達(dá)式;

(2)函數(shù)圖象上有兩點P(x1,y),Q(x2,y),且滿足x1<x2,結(jié)合函數(shù)圖象回答問題;

①當(dāng)y=3時,直接寫出x2﹣x1的值;

②當(dāng)2≤x2﹣x1≤3,求y的取值范圍.

【答案】(1)y= x2﹣4x+3;(2)①4;②0≤y≤

【解析】

1)利用圖中信息,根據(jù)待定系數(shù)法即可解決問題;

2①求出y3時的自變量x的值即可解決問題;

②當(dāng)x2x13時,易知x1,此時y23,可得點P的坐標(biāo),由此即可解決問題.

解:(1)由圖象知拋物線與x軸交于點(1,0)、(3,0),與y軸的交點為(0,3),

設(shè)拋物線解析式為y=a(x﹣1)(x﹣3),

將(0,3)代入,得:3a=3,

解得:a=1,

∴拋物線解析式為y=(x﹣1)(x﹣3)=x2﹣4x+3;

(2)①當(dāng)y=3時,x2﹣4x+3=3,

解得:x1=0,x2=4,

∴x2﹣x1=4;

②當(dāng)x2﹣x1=3時,易知x1=,此時y=﹣2+3=

觀察圖象可知當(dāng)2≤x2﹣x1≤3,求y的取值范圍0≤y≤

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx﹣3過點A(﹣1,0),B(3,0),點M、N為拋物線上的動點,過點MMDy軸,交直線BC于點D,交x軸于點E.過點NNFx軸,垂足為點F

(1)求二次函數(shù)y=ax2+bx﹣3的表達(dá)式;

(2)M點是拋物線上對稱軸右側(cè)的點,且四邊形MNFE為正方形,求該正方形的面積;

(3)M點是拋物線上對稱軸左側(cè)的點,且∠DMN=90°,MD=MN,請直接寫出點M的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中考體育測試前,某區(qū)教育局為了了解選報引體向上的初三男生的成績情況,隨機(jī)抽取了本區(qū)部分選報引體向上項目的初三男生的成績,并將測試得到的成績繪成了下面兩幅不完整的統(tǒng)計圖:

請你根據(jù)圖中的信息,解答下列問題:

1)寫出扇形圖中______,并補(bǔ)全條形圖;

2)樣本數(shù)據(jù)的平均數(shù)是______,眾數(shù)是______,中位數(shù)是______;

3)該區(qū)體育中考選報引體向上的男生共有1200人,如果體育中考引體向上達(dá)6個以上(含6個)得滿分,請你估計該區(qū)體育中考中選報引體向上的男生能獲得滿分的有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①有一個角是的等腰三角形是等邊三角形;②如果三角形的一個外角平分線平行三角形的一邊,那么這個三角形是等腰三角形;③三角形三邊的垂直平分線的交點與三角形三個頂點的距離相等;④有兩個角相等的等腰三角形是等邊三角形.其中正確的個數(shù)有(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)xOy中的第一象限內(nèi),直線y1=kx(k≠0)與雙曲y2=(m≠0)的一個交點為A(2,2).

(1)求k、m的值;

(2)過點P(x,0)且垂直于x軸的直線與y1=kx、y2= 的圖象分別相交于點M、N,點M、N 的距離為d1,點M、N中的某一點與點P的距離為d2,如果d1=d2,在下圖中畫出示意圖并且直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長為3,點E,F(xiàn)分別在射線DC,DA上運動,且DE=DF.連接BF,作EH⊥BF所在直線于點H,連接CH.

(1)如圖1,若點E是DC的中點,CH與AB之間的數(shù)量關(guān)系是 ;

(2)如圖2,當(dāng)點E在DC邊上且不是DC的中點時,(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說明理由;

(3)如圖3,當(dāng)點E,F(xiàn)分別在射線DC,DA上運動時,連接DH,過點D作直線DH的垂線,交直線BF于點K,連接CK,請直接寫出線段CK長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABBC,∠ABC90°,點EBC上,點FAB的延長線上,且AECF

1)求證:ABE≌△CBF

2)若∠ACF70°,求∠EAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】華聯(lián)商場預(yù)測某品牌村衫能暢銷市場,先用了8萬元購入這種襯衫,面市后果然供不應(yīng)求,于是商場又用了17.6萬元購入第二批這種襯衫,所購數(shù)量是第一批購入量的2倍,但單價貴了4元.商場銷售這種襯衫時每件定價都是58元,最后剩下的150件按定價的八折銷售,很快售完.

(1)第一次購買這種襯衫的單價是多少?

(2)在這兩筆生意中,華聯(lián)商場共贏利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是∠BAC的平分線AD上一點,且∠BAC=30°PEABAC于點E,已知AE=2,則點PAB的距離是(

A.1.5B.C.1D.2

查看答案和解析>>

同步練習(xí)冊答案