【題目】已知,二次函數(shù)≠0的圖像經(jīng)過點(3,5)、(2,8)、(0,8).

①求這個二次函數(shù)的解析式;

②已知拋物線≠0,≠0,且滿足≠0,1,則我們稱拋物線互為“友好拋物線”,請寫出當時第①小題中的拋物線的友好拋物線,并求出這“友好拋物線”的頂點坐標.

【答案】(1);(2)(1,-18)或(1,

【解析】(1)先把三個點的坐標的人y=ax2+bx+c=0(a≠0)得到關于a、b、c的方程組,然后解方程組求出a、b、c 的值;

(2)根據(jù)圖中的定義得到===-===-,則可得到友好拋物線的解析式是:y=2x2-4x-16或y=x2-x-4,然后分別配成頂點式,則可得到它們的頂點坐標.

解:(1)根據(jù)題意,得 可以解得,

∴這個拋物線的解析式是

(2)根據(jù)題意,得

解得a2=2,b2=-4,c2=-16或a1=,b1=-1,c1=-4,,

友好拋物線的解析式是:y=2x2-4x-16或y=x2-x-4,

∴它的頂點坐標是(1,-18)或(1,

“點睛”二次函數(shù)是初中數(shù)學的一個重要內容之一,其中解析式的確定一般都采用待定系數(shù)法求解,但是要求學生根據(jù)給出的已知條件的不同,要能夠恰當?shù)剡x取合適的二次函數(shù)解析式的形式,選擇得當則解題簡捷,若選擇不得當,就會增加解題的難度。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列條件之一能使菱形ABCD是正方形的為( 。

ACBD ②∠BAD=90° AB=BC AC=BD.

A. ①③ B. ②③ C. ②④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論:①4ac<b2;②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;③3a+c<0④當y>0時,x的取值范圍是﹣1≤x<3⑤當x<0時,y隨x增大而增大其中結論正確的個數(shù)是( 。

A. 5個 B. 4個 C. 3個 D. 2個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給出下列判斷:

①若|m|>0,則m>0;

②若m>n,則|m|>|n|;

③若|m|>|n|,則m>n;

④任意數(shù)m,則|m|是正數(shù);

⑤在數(shù)軸上,離原點越遠,該點對應的數(shù)的絕對值越大,

其中正確的結論的個數(shù)為(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,AD=4,點E是BC邊上一個動點,連接AE,作DF⊥AE于點F,當BE的長為_____________________時,△CDF是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一元二次方程x2﹣3x﹣2=0的兩個實數(shù)根為x1,x2,則(x1﹣1)(x2﹣1)的值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在□ABCD中,∠BAD的平分線交BC于點E,∠ABC的平分線交AD于點F,AEBF相交于點O,連接EF

(1)求證:四邊形ABEF是菱形;

(2)若AE=6,BF=8,CE,求□ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩條直線相交有__個交點,三條直線相交最多有__個交點,最少有__個交點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察右面的圖案,每條邊上有n(n≥2)個方點,每個圖案中方點的總數(shù)是S.

(1)請寫出n=5時, S= ;

(2)請寫出n=18時,S=

(3)按上述規(guī)律,寫出S與n的關系式 S=

查看答案和解析>>

同步練習冊答案