【題目】如圖,平面內(nèi)的直線有相交和平行兩種位置關(guān)系
(1)如圖①,已知AB∥CD,求證:∠BPD=∠B+∠D;(提示;可過點(diǎn)P作PO∥AB)
(2)如圖②,已知AB∥CD,求證:∠B=∠P+∠D.
【答案】(1)見解析;(2)見解析
【解析】
(1)過點(diǎn)P作PE∥AB,由平行線的性質(zhì)“兩直線平行,內(nèi)錯角相等”得出∠B=∠BPE、∠D=∠DPE,結(jié)合角之間的關(guān)系即可得出結(jié)論;
(2)過點(diǎn)P作PE∥CD,根據(jù)平行線的性質(zhì)即可得出∠B=∠BOD,根據(jù)平行線的性質(zhì)即可得出∠BOD=∠BPE、∠D=∠DPE,結(jié)合角之間的關(guān)系即可得出結(jié)論.
(1)過點(diǎn)P作PE∥AB,如圖1所示.
∵AB∥PE,AB∥CD,
AB∥PE∥CD.
∴∠B=∠BPE,∠D=∠DPE
∴∠BPD=∠BPE+∠DPE=∠B+∠D.
(2)過點(diǎn)P作PE∥CD,如圖2所示.
∵AB∥CD,
∴∠B=∠BOD,
∵PE∥CD,
∴∠BOD=∠BPE;∠D=∠DPE
∴∠BPE=∠BPD+∠DPE=∠BPD+∠D
∴∠BOD=∠BPD +∠D
即∠B=∠BPD +∠D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知∠AOB和一條定長線段a,在∠AOB內(nèi)找一點(diǎn)P,使點(diǎn)P到OA,OB的距離都等于a,作法如下:
①在∠AOB內(nèi)作OB的垂線段NH,使NH=a,H為垂足;②過N作NM∥OB;③作∠AOB的平分線OP,與NM交于點(diǎn)P;④點(diǎn)P即為所求.其中③的依據(jù)是( )
A. 平行線之間的距離處處相等 B. 角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上
C. 角的平分線上的點(diǎn)到角的兩邊的距離相等 D. 線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,,cm,cm,若以C為圓心,以2cm為半徑作圓,則點(diǎn)A在⊙C_____;點(diǎn)B在⊙C________;若以AB為直徑作⊙O,則點(diǎn)C在⊙O_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一蓄水池有水40m3,按一定的速度放水,水池里的水量y(m3)與放水時(shí)間t(分)有如下關(guān)系:
放水時(shí)間(分) | 1 | 2 | 3 | 4 | … |
水池中水量(m3) | 38 | 36 | 34 | 32 | … |
下列結(jié)論中正確的是( )
A. y隨t的增加而增大
B. 放水時(shí)間為15分鐘時(shí),水池中水量為8m3
C. 每分鐘的放水量是2m3
D. y與t之間的關(guān)系式為y=40t
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在小正方形組成的的網(wǎng)格紙中,四邊形ABCD和四邊形A2B2C2D2的位置如圖所示.
(1)現(xiàn)把四邊形ABCD繞C點(diǎn)按順時(shí)針方向旋轉(zhuǎn)90°,畫出相應(yīng)的圖形A1B1C1D1,
(2)若四邊形A1B1C1D1平移后,與四邊形A2B2C2D2成軸對稱,寫出滿足要求的一種平移方法,并畫出平移后的圖形A3B3C3D3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 中,函數(shù)的圖象與直線交于點(diǎn)A(3,m).
(1)求k、m的值;
(2)已知點(diǎn)P(n,n)(n>0),過點(diǎn)P作平行于軸的直線,交直線y=x-2于點(diǎn)M,過點(diǎn)P作平行于y軸的直線,交函數(shù) 的圖象于點(diǎn)N.
①當(dāng)n=1時(shí),判斷線段PM與PN的數(shù)量關(guān)系,并說明理由;
②若PN≥PM,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,沿EF將矩形折疊,使A、C重合,AC與EF交于點(diǎn)H.
(1)求證:△ABE≌△AGF;
(2)若AB=6,BC=8,求△ABE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖,反比例函數(shù)的圖象經(jīng)過點(diǎn)A(1,4),直線y=2x+b(b≠0)與雙曲線在第一、三象限分別相交于P,Q兩點(diǎn),與x軸、y軸分別相交于C,D兩點(diǎn).(1)求k的值;(2)當(dāng)b=-3時(shí),求△OCD的面積;
(3)連接OQ,是否存在實(shí)數(shù)b,使得S△ODQ=S△OCD?若存在,請求出b的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,點(diǎn)在第一象限,為等邊三角形,,垂足為點(diǎn).,垂足為.
(1)求OF的長;
(2)作點(diǎn)關(guān)于軸的對稱點(diǎn),連交于E,求OE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com