【題目】圖,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(1,4),直線y=2x+b(b≠0)與雙曲線在第一、三象限分別相交于P,Q兩點(diǎn),與x軸、y軸分別相交于C,D兩點(diǎn).(1)求k的值;(2)當(dāng)b=-3時(shí),求△OCD的面積;
(3)連接OQ,是否存在實(shí)數(shù)b,使得S△ODQ=S△OCD?若存在,請(qǐng)求出b的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)k=4; (2)S△OCD=; (3)存在,b的值為﹣2.
【解析】
(1)根據(jù)反比例函數(shù)的圖象上點(diǎn)的坐標(biāo)特征易得;
(2)當(dāng)時(shí),直線解析式為,則利用坐標(biāo)軸上點(diǎn)的坐標(biāo)特征可求出,,然后根據(jù)三角形面積公式求解;
(3)先表示出,根據(jù)三角形面積公式,由于,所以點(diǎn)和點(diǎn)到的距離相等,則的橫坐標(biāo)為,利用直線解析式可得到,再根據(jù)反比例函數(shù)的圖象上點(diǎn)的坐標(biāo)特征得到,然后解方程即可得到滿足條件的的值.
(1)∵反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)A(1,4),
∴k=1×4=4;
(2)當(dāng)b=﹣3時(shí),直線解析式為y=2x﹣3,
∴C(,0),D(0,﹣3),
∴S△OCD=;
(3)存在.
在直線y=2x+b上,
當(dāng)y=0時(shí),2x+b=0,解得x=,則C(,0).
∵S△ODQ=S△OCD,
∴點(diǎn)Q和點(diǎn)C到OD的距離相等.
∵點(diǎn)Q在第三象限,
∴點(diǎn)Q的橫坐標(biāo)為.
當(dāng)x=時(shí),y=2x+b=2b,則Q(,2b).
∵點(diǎn)Q在反比例函數(shù)y=的圖象上,
∴2b=4,解得b=﹣2或b=2(舍去),
∴b的值為﹣2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)邊長(zhǎng)為2的等邊△ABC的邊AB上點(diǎn)P作PE⊥AC于E,Q為BC延長(zhǎng)線上一點(diǎn),當(dāng)PA=CQ時(shí),連PQ交AC邊于D,則DE長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面內(nèi)的直線有相交和平行兩種位置關(guān)系
(1)如圖①,已知AB∥CD,求證:∠BPD=∠B+∠D;(提示;可過(guò)點(diǎn)P作PO∥AB)
(2)如圖②,已知AB∥CD,求證:∠B=∠P+∠D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司要印制宣傳材料,現(xiàn)有甲、乙兩個(gè)印刷廠.甲印刷廠提出:每份材料收1元印制費(fèi),另收1500元制版費(fèi);乙印刷廠提出:每份材料收2.5元印制費(fèi),不收制版費(fèi).設(shè)印制數(shù)量為x(份),甲,乙兩印刷廠的收費(fèi)分別為y1和y2(單位是:元).
(1)請(qǐng)寫出y1=______________;y2=_____________.
(2)印制800份宣傳材料時(shí),選擇哪家印刷廠比較合算?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】植樹(shù)節(jié)期間,某校360名學(xué)生參加植樹(shù)活動(dòng),要求每人植樹(shù)3~6棵,活動(dòng)結(jié)束后隨機(jī)抽查了20名學(xué)生每人的植樹(shù)量,并分為四種類型,A:3棵;B:4棵;C:5棵;D:6棵.根據(jù)各類型對(duì)應(yīng)的人數(shù)繪制了扇形統(tǒng)計(jì)圖(如圖1)和尚未完成的條形統(tǒng)計(jì)圖(如圖2).請(qǐng)解答下列問(wèn)題:
(1)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)這20名學(xué)生每人植樹(shù)量的眾數(shù)為_(kāi)_______棵,中位數(shù)為_(kāi)_______棵;
(3)在求這20名學(xué)生每人植樹(shù)量的平均數(shù)時(shí),小宇是這樣分析的:
第一步:求平均數(shù)的公式是;
第二步:在該問(wèn)題中,n=4,,,,;
第三步:.
①小宇的分析是不正確的,他錯(cuò)在第幾步?
請(qǐng)你幫他計(jì)算出正確的平均數(shù),并估計(jì)這360名學(xué)生共植樹(shù)多少棵.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開(kāi)設(shè)了足球、籃球、乒乓球和羽毛球四個(gè)課外體育活動(dòng)小組,有512名學(xué)生參加,每人只參加一個(gè)組.為了了解學(xué)生參與的情況,對(duì)參加的人員分布情況進(jìn)行抽樣調(diào)查,并繪制了下面兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供信息,解答下面問(wèn)題:
(1)此次共抽查了多少名同學(xué)?
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;在扇形統(tǒng)計(jì)圖中的括號(hào)中填寫百分?jǐn)?shù);
(3)請(qǐng)估計(jì)該校參加籃球運(yùn)動(dòng)小組的學(xué)生人數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一位運(yùn)動(dòng)員在距籃下4m處跳起投籃,球運(yùn)行的路線是拋物線,當(dāng)球運(yùn)行的水平距離是2.5m時(shí),達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃圈.已知籃圈中心到地面的距離為3.05m.
(1)建立如圖所示的平面直角坐標(biāo)系,求拋物線的解析式.
(2)該運(yùn)動(dòng)員身高1.8m,在這次跳投中,球在頭頂上0.25m處出手,
問(wèn):球出手時(shí),他距離地面的高度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=AC,EB=EC,AE的延長(zhǎng)線交BC于D,則圖中全等的三角形共有_____對(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“中國(guó)夢(mèng)”是中華民族每個(gè)人的夢(mèng),也是每個(gè)中小學(xué)生的夢(mèng).各中小學(xué)開(kāi)展經(jīng)典誦讀活動(dòng),無(wú)疑是“中國(guó)夢(mèng)”教育這一宏大樂(lè)章里的響亮音符.某中學(xué)在全校800名學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查,調(diào)查內(nèi)容分為四種::非常喜歡,:喜歡,:一般,:不喜歡
被調(diào)查的同學(xué)只能選取其中的一種.根據(jù)調(diào)查結(jié)果,繪制出兩個(gè)不完整的統(tǒng)計(jì)圖(圖形如下),并根據(jù)圖中信息,回答下列問(wèn)題:
(1)本次調(diào)查中,一共調(diào)查了多少名學(xué)生?
(2)條形統(tǒng)計(jì)圖中,_________,_____________;
(3)在扇形統(tǒng)計(jì)圖中,“:喜歡”所在扇形的圓心角的度數(shù)是多少?
(4)請(qǐng)估計(jì)該學(xué)校800名學(xué)生中“:非常喜歡”和“:喜歡”經(jīng)典誦讀的學(xué)生共有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com