【題目】如圖,在ABC中,∠BC,AB=8,BC=6,點DAB的中點,點P在線段BC上以每秒2個單位的速度由點B向點C運動,同時點Q在線段CA上以每秒a個單位的速度由點C向點A運動,設(shè)運動時間為t(秒)(0≤t≤3).

(1)用含t的代數(shù)式表示線段PC的長;

(2)若點P、Q的運動速度相等,t=1時,BPDCQP是否全等,請說明理由.

(3)若點P、Q的運動速度不相等,BPDCQP全等時,求a的值.

【答案】(1)6﹣2t;(2)證明見解析;(3)t=,a=.

【解析】

(1)用BC的長度減去BP的長度即可;

(2)求出PB,CQ的長即可判斷;

(3)根據(jù)全等三角形對應(yīng)邊相等,列方程即可得到結(jié)論.

(1)PCBCBP=6﹣2t;

(2)t=1時,PB=2,CQ=2,

PCBCPB=6﹣2=4,

BDAD=4,

PCBD,

∵∠CB,CQBP

∴△QCP≌△PBD

(3)∵點P、Q的運動速度不相等,

BPCQ,

又∵△BPDCPQ全等,∠BC,

BPPC,BDCQ,

2t=6﹣2tat=4,

解得:ta

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以等邊ABC的邊AC為腰作等腰CAD,使AC=AD,連接BD,若∠DBC=41°,∠CAD=________°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程解下列實際問題

某校為美化校園,計劃對面積為1800的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天完成綠化的面積是乙隊每天完成綠化面積的2倍,并且在獨立完成面積為400區(qū)域的綠化時,甲隊比乙隊少用4.求甲、乙兩工程隊每天能完成綠化的面積分別是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】雪楓中學是亳州市精細化管理示范校,量化管理充分調(diào)動學生的學習熱情,某班為了鼓勵學生周末在家做試卷,規(guī)定每人每月做試卷不超過5張的,在月底量化考核中每人每張加2分;超過5張的部分,每人每張加3分,另外對超過5張的學生由班主任再額外一次性獎勵1.5分。設(shè)小明這個月做x張,本月量化總得分為y.

(1)試寫出總分y ()x ()之間的函數(shù)關(guān)系式:

(2)如果小明本學期9月份做了8張試卷,那他總共得了多少分?

(3)如果小明本學期10月份量化得41.5分,那么他做了多少張試卷?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,、分別是、邊上的點,、、、…、邊的等分點,.如圖1,若,則 __________度;如圖2,若,,則 __________(用含的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐.超市約定:隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個,超市在某天提供的早餐食品為菜包、面包、雞蛋、油條四樣食品.

(1)按約定,“某顧客在該天早餐得到兩個雞蛋”是________事件(填“隨機”“必然”或“不可能”);

(2)請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中, ∠C=90°,邊AB的垂直平分線交AB、AC分別于點D,點E,連結(jié)BE.

(1)若∠A=40°,求∠CBE的度數(shù).

(2)若AB=10,BC=6,求△BCE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC在平面直角坐標系中的位置如圖所示.A、B、C三點在格點上.

1)作出ABC關(guān)于y軸對稱的A1B1C1,并寫出點C1的坐標   ;

2)在(1)的條件下,連接CC1AB于點D,請標出點D,并直接寫出CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】菜農(nóng)李偉種植的某蔬菜計劃以每千克元的單價對外批發(fā)銷售,由于部分菜農(nóng)盲目擴大種植,造成該蔬菜滯銷.李偉為了加快銷售,減少損失,對價格經(jīng)過兩次下調(diào)后,以每千克元的單價對外批發(fā)銷售.

求平均每次下調(diào)的百分率;

小華準備到李偉處購買噸該蔬菜,因數(shù)量多,李偉決定再給予兩種優(yōu)惠方案以供選擇:

方案一:打九折銷售;

方案二:不打折,每噸優(yōu)惠現(xiàn)金元.

試問小華選擇哪種方案更優(yōu)惠,請說明理由.

查看答案和解析>>

同步練習冊答案